Modeling Graphene-based PIN-FET with Quantum Dot Channel

Document Type : Articles

Authors

1 Department of Physics, Payame Noor University, Tehran, Iran

2 Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran

Abstract

Abstract:
Discrete energy levels of quantum dots (QD) have electronic and optoelectronic applications. In this paper, a novel graphene nanoribbon (GNR) field effect transistor (FET) is modeled numerically using the NEGF formalism. In the new device model of this paper, the channel region is composed of one or two QDs, made by only one metallic gate electrode. This model utilizes a semiconductor armchair graphene nanoribbon through which the current may pass. The two highly doped ends of GNR act as source and drain contacts. At this unique model, one or two quantum dots form on GNR channel.  The discreteness of energy levels of the two coupled quantum dots, revealed by applying gate voltage, gives rise to resonant tunneling.  Resonant tunneling through these levels results in negative differential conductance. The coupling between QDs determines the current characteristics of device. Step-wise increment of current by increasing drain voltage manifests QDs discrete energy levels.

Keywords


[1] Hasanirokh, A Asgari and S Mohammadi, Infrared navigation—Part I: An assessment of feasibility, Journal of the European Optical Society-Rapid Publications, 17 (Dec. 2021) 1-10.
[2] H. Mohammadpour, Quantum dot resonant tunneling FET on graphene, Physica E, 81 (Jul. 2016) 91. Available:https://www.sciencedirect.com/science/article/abs/pii/S1386947716300649 
  [3]  D. Ghosh, K. Sarkar K, P. Devi P, K. H. Kim and P. Kumar, Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices, Renewable and Sustainable Energy Reviews, 135 (Jan. 2021) 110391.
[4] X. Shi, X. Liu and H. Zeng, ZrO2 quantum dots/graphene phototransistors for deep UV detection, Materials Research Bulletin, 96 (Dec. 2017) 458-462. Available:https://www.sciencedirect.com/science/article/abs/pii/S002554081731334X
[5] H Agarwal et al Engineering Negative Differential Resistance in NCFETs   for Analog Applications, IEEE Transactions on Electron Devices, 68 (May 2018) 2033-2039.
[6] I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. L. Koppens & G. Konstantatos, Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor, Nat. Commun., 7 (Jun. 2016) 11954.
[7] V. Ryzhii, The theory of quantum-dot infrared phototransistors,       Semiconductor Science and Technology, 11 (Jan. 1996) 759.
[8] Konstantatos, M. Badioli, L. Gaudreau Gerasimos, J. Osmond, M. Bernechea, F. Pelayo G. Arquer, F. Gatti & F. H. L. Koppens. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech,7(2012, May.) 363–368.
[9] Akbari Eshkalak, R. Faez. A computational study on the performance of Graphene Nanoribbon Field Effect Transistor. Journal of Optoelectronical Nano Structures, 2(3) (2017, Aug.) 1-12.
Available: https://jopn.marvdasht.iau.ir/article_2427.html
[10] Rohani, A. A. Emrani Zarandi. Designing a novel high-speed ternary-logic multiplier using GNRFRT technology. Journal of Optoelectronical Nano Structures, 8(1) (2023, Jan.) 1-12.
[11] Rahimian. Controlling ambipolar current in a junctionless Tunneling FET emphasizing on depletion region extension. Journal of Optoelectronical Nano Structures, 8(1) (2023, Jan.) 13-31. Available: https://jopn.marvdasht.iau.ir/article_5899.html
[12] V. Khademhosseini, D. Dideban and M. Ahmadi. Current Analysis of Single Electron Transistor Based on Graphene Double Quantum Dots. ECS Journal of Solid State Science and Technology,9(2020, ) 021003. Available: https://iopscience.iop.org/article/10.1149/2162-8777/ab6980
[13] H. Mohammadpour, Double Quantum Dot FET on graphene. JETP Letters, 114 (11) (2021 Nov.) 707-712. Available:https://link.springer.com/article/10.1134/S002136402123003X
[14] S. Afshari, J. Jahanbin Sardroodi, H. Mohammadpour, Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT. Journal of Nanoanalysis, 4(4) (2017, Sept.) 272-279. Available:https://jnanoanalysis.tms.iau.ir/article_539940.html
[15] Salimpour, H. Rasooli Saghai, Impressive Reduction of Dark Current in InSb Infrared Photodetector to achieve High Temperature Performance. Journal of Optoelectronical Nano Structures, 3(4) (2018, Oct.) 81-96. Available:https://jopn.marvdasht.iau.ir/article_3265_698c93521a209e8daff27bb7ec5f43d5.pdf
[16] Ghajarpour-Nobandegani, M. J. Karimi, H. Rahimi, Tunable Terahertz Absorber Based on Graphene Disk Array. Journal of Optoelectronical Nano Structures, 8(2) (2023, May) 1-14. Available:https://jopn.marvdasht.iau.ir/article_5921.html
[17] Jabbari, M. Dehghan, M. K. Moravvej Farshi, G. Darvish, M. Ghaffari-miab. Ultra-Compact Bidirectional Terahertz Switch Based on Resonance in Graphene Ring and Plate. Journal of Optoelectronical Nano Structures, 4(4) (2019, Dec.) 99-112. Available:https://jopn.marvdasht.iau.ir/article_3761_d2fa3599c18c16e0315c6611e3236684.pdf
[18] Riahinasab, E. Darabi. Analytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL. Journal of Optoelectronical Nano Structures, 3(2) (2018, Jun.) 65-86. Available:https://jopn.marvdasht.iau.ir/article_2876_3ac61163b777771c8c771cc5f808bb45.pdf
[19] Hakimian, M. R. Shayesteh, M. Moslemi. A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers. Journal of Optoelectronical Nano Structures, 4(3) (2019, Aug.) 1-16. Available:https://jopn.marvdasht.iau.ir/article_3616_eb2f17e255bbbe8e99a32629674ad938.pdf
[20] Rezvani Jalal, M. Habibi, Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser. Journal of Optoelectronical Nano Structures, 2(3) (2017, May) 61-70. Available:https://jopn.marvdasht.iau.ir/article_2425_968b2c48351292f237924ada4af47699.pdf
[21] P Tulewicz, K Wrześniewski and I Weymann. Spintronic transport through a double quantum dot-based spin valve with noncollinear magnetizations. Journal of Magnetism and Magnetic Materials,546(2022, ) 168788. Available: https://www.sciencedirect.com/science/article/abs/pii/S0304885321010118
[22] A Bordoloi, V Zannier, L Sorba, C Schönenberger and A Baumgartner. A double quantum dot spin valve. Communications Physics 3(2020, ) 135. Available: https://www.nature.com/articles/s42005-020-00405-2
[23] T. Ghaffary, F. Rahimi, Y. Naimi, H. Khajeazad, Study of the spin-orbit interaction effectson energy levels and the absorption coefficients of spherical quantum dot and quantum antidote under the magnetic field. Journal of Optoelectronical Nano Structures, 6(2) (2021, May) 55-74. Available: https://jopn.marvdasht.iau.ir/article_4769.html
[24] L Gyongyosi, S Imre S. A Survey on quantum computing technology. Computer Science Review 31(2019, ) 51-71.
[25] M. R. Mohebbifar. Study of the Purcell factor of a single photon source based on quantum dot nanostructure for quantum computing applications. Journal of Optoelectronical Nano Structures, 6(4) (2021, Oct.) 95-108. Available: https://jopn.marvdasht.iau.ir/article_5052.html
[26] M. Amirhoseiny, G. Alahyarizadeh. Enhancement of Deep Violet InGaN Double Quantum Wells Laser Diodes Performance Characteristics Using Superlattice Last Quantum Barrier. Journal of Optoelectronical Nano Structures, 6(2) (2021, May) 107-120. Available:https://jopn.marvdasht.iau.ir/article_4776_4941a2547e09c61dfc979b5fed25a722.pdf
 [27] A. Asrar, M. Servatkhah, M. Yasrebi. Providing a Bird Swarm Algorithm based on Classical Conditioning Learning Behavior and Comparing this Algorithm with sinDE, JOA, NPSO and D-PSO-C Based on Using in Nanoscience.  Journal of Optoelectronical Nano Structures, 5(3) (2020, Aug.) 39-58. Available:https://jopn.marvdasht.iau.ir/article_4403_36539ec52741c9b9bd4c97d2445d2d1e.pdf
[28] S Datta. Quantum Transport: Atom to Transistor. New York: Cambridge University Press, 2005, 183-249.
[29] K. I. Bolotin, K. J. Sikes, Z. Zhang, M. Klima, G. Fudenberg , J. Hone, P. Kim , H.L. Stormer . Ultrahigh electron mobility in suspended graphene. Solid State Commun. 3(2008, ) 351-355. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038109808001178
[30] R Lake, G Klimeck, R C Bowen and D JovanovicSingle and Multiband Modeling of Quantum Electron Transport Through Layered Semiconductor Devices. Journal of Applied Physics 81(1997, ) 7845-7869.