[1] Hasanirokh, A Asgari and S Mohammadi, Infrared navigation—Part I: An assessment of feasibility, Journal of the European Optical Society-Rapid Publications, 17 (Dec. 2021) 1-10.
[3] D. Ghosh, K. Sarkar K, P. Devi P, K. H. Kim and P. Kumar, Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices, Renewable and Sustainable Energy Reviews, 135 (Jan. 2021) 110391.
[5] H Agarwal et al Engineering Negative Differential Resistance in NCFETs for Analog Applications, IEEE Transactions on Electron Devices, 68 (May 2018) 2033-2039.
[6] I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. L. Koppens & G. Konstantatos, Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor, Nat. Commun., 7 (Jun. 2016) 11954.
[7] V. Ryzhii, The theory of quantum-dot infrared phototransistors, Semiconductor Science and Technology, 11 (Jan. 1996) 759.
[8] Konstantatos, M. Badioli, L. Gaudreau Gerasimos, J. Osmond, M. Bernechea, F. Pelayo G. Arquer, F. Gatti & F. H. L. Koppens. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech,7(2012, May.) 363–368.
[9] Akbari Eshkalak, R. Faez. A computational study on the performance of Graphene Nanoribbon Field Effect Transistor. Journal of Optoelectronical Nano Structures, 2(3) (2017, Aug.) 1-12.
Available: https://jopn.marvdasht.iau.ir/article_2427.html
[10] Rohani, A. A. Emrani Zarandi. Designing a novel high-speed ternary-logic multiplier using GNRFRT technology. Journal of Optoelectronical Nano Structures, 8(1) (2023, Jan.) 1-12.
[11] Rahimian.
Controlling ambipolar current in a junctionless Tunneling FET emphasizing on depletion region extension. Journal of Optoelectronical Nano Structures, 8(1) (2023, Jan.) 13-31. Available:
https://jopn.marvdasht.iau.ir/article_5899.html
[16] Ghajarpour-Nobandegani, M. J. Karimi, H. Rahimi, Tunable Terahertz Absorber Based on Graphene Disk Array. Journal of Optoelectronical Nano Structures, 8(2) (2023, May) 1-14. Available:
https://jopn.marvdasht.iau.ir/article_5921.html
[23] T. Ghaffary, F. Rahimi, Y. Naimi, H. Khajeazad,
Study of the spin-orbit interaction effectson energy levels and the absorption coefficients of spherical quantum dot and quantum antidote under the magnetic field. Journal of Optoelectronical Nano Structures, 6(2) (2021, May) 55-74. Available:
https://jopn.marvdasht.iau.ir/article_4769.html
[24] L Gyongyosi, S Imre S. A Survey on quantum computing technology. Computer Science Review 31(2019, ) 51-71.
[25] M. R. Mohebbifar.
Study of the Purcell factor of a single photon source based on quantum dot nanostructure for quantum computing applications. Journal of Optoelectronical Nano Structures, 6(4) (2021, Oct.) 95-108. Available:
https://jopn.marvdasht.iau.ir/article_5052.html
[28] S Datta. Quantum Transport: Atom to Transistor. New York: Cambridge University Press, 2005, 183-249.
[30] R Lake, G Klimeck, R C Bowen and D JovanovicSingle and Multiband Modeling of Quantum Electron Transport Through Layered Semiconductor Devices. Journal of Applied Physics 81(1997, ) 7845-7869.