[7] H. Xia, R. Chen, L. Ren, Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: Modeling and experiment. Sens. Actuators Phys. 257 (2017) 73–83. Available:
[8] V. R. Challa, M. G. Prasad, F. T. Fisher, A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18 (2009) 095029. Available:
[10] D. S. Kwon, H. J. Ko, J. Kim,
Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). (2017) 49–52. Available:
https://ieeexplore.ieee.org/document/7863336.
[11] J. Zhao, H. Zhang, F. Su, Z. Yin,
A novel model of piezoelectric- electromagnetic hybrid energy harvester based on vortex-induced vibration. In 2017 International Conference on Green Energy and Applications (ICGEA). (2017) 105–108. Available:
https://ieeexplore.ieee.org/document/7925464.
[12] J. Bito, R. Bahr, J. G. Hester, S. A. Nauroze, A. Georgiadis, M. M. Tentzeris,
A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors. IEEE Trans. Microw. Theory Tech. 65 (2017) 1831–1842. Available:
https://ieeexplore.ieee.org/document/7857107.
[14] M. Salauddin, R. M. Toyabur, P. Maharjan, M. S. Rasel, J. W. Kim, H. Cho, J. Y. Park, Miniaturized Springless Hybrid Nanogenerator for Powering Portable and Wearable Electronic Devices from Human-Body-Induced Vibration. Nano Energy. 51 (2018) 61-72.
[15] D. Jalalian, A. Ghadimi, A. Kiani Sarkaleh,
Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells, J. Optoelectron. Nanostructures. 5(2) (2020) 65-78. Available:
https://jopn.miau.ac.ir/article_4219.html
[16] H. Izadneshan, G. Solookinejad,
Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications, J. Optoelectron. Nanostructures. 3(2) (2018) 19-28. Available:
https://jopn.miau.ac.ir/article_2861.html.
[17] R. Yahyazadeh, Z. Hashempour,
Numerical modeling of electronic and electrical characteristics of 0.3 0.7 AlGaN/GaN multiple quantum well solar cells, J. Optoelectron. Nanostructures. 5(3) (2020) 81-102. Available:
https://jopn.miau.ac.ir/article_4406.html.
[18] S. M. S. Hashemi Nassab, M. Imanieh, A. Kamaly,
The effect of doping and thickness of the layers on CIGS solar cell efficiency, J. Optoelectron. Nanostructures. 1(1) (2016) 9-24. Available:
https://jopn.miau.ac.ir/article_1812.html.
[20] D. Hao, L. Qi, A. M. Tairab, A. Ahmed, A. Azam, D. Luo, Y. Pan, Z. Zhang and J. Yan, Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renewable Energy. 188, (2022) 678-697. Available:
[29] R. Usharani, G. Uma and M. Umapathy,
Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. Int. J. Precis. Eng. Manuf.-Green Technol. 3 (4) (2016) 343–351. Available:
https://doi.org/10.1007/S40684-016-0043-1.
[32] K. Zhao, J. Xie, Y. Zhao, D. Han, Y. Wang, B. Liu and J. Dong,
Investigation on Transparent, Conductive ZnO:Al Films Deposited by Atomic Layer Deposition Process. Nanomaterials, 12, (2022) 172-178. Available:
https://pubmed.ncbi.nlm.nih.gov/35010122/.