[1] L. Hernández-Callejo, S. Gallardo-Saavedra, V. Alonso-Gómez, A review of photovoltaic systems: Design, operation and maintenance, J. Sol. Energy., 188 (Aug. 2019) 426-40.
[2] M. Cheraghizade, Optoelectronic properties of PbS films: Effect of carrier gas, Journal of Optoelectronical Nanostructures, 4 (2) (May 2019) 1-12.
[3] H. Hashemi Madani, M. R. Shayesteh, M. R. Moslemi, A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures., 6 (1) (Jan. 2021) 71-86.
[4] A. Abdolahzadeh Ziabari, S. Royanian, R. Yousefi, S. Ghoreishi, Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of the Position of Nanoparticles, Journal of Optoelectronical Nanostructures., 5 (4) (Nov. 2020) 17-32.
[5] J. Tian, Q. Xue, Q. Yao, N. Li, CJ. Brabec, HL. Yip, Inorganic halide perovskite solar cells: progress and challenges, Adv. Energy Mater., 10 (23) (Jun 2020) 2000183.
[6] D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Perovskite-based solar cells: materials, methods, and future perspectives, J. Nanomater., (Jan. 2018) 1-15.
[7] A. Ghadimi, A. Kiani Sarkaleh, Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells, Journal of Optoelectronical Nanostructures., 5 (2) (May 2020) 165-78.
[8] H. Pan, X. Zhao, X. Gong, H. Li, N. H. Ladi, X. L. Zhang, W. Huang, S. Ahmad, L. Ding, Y. Shen, M. Wang, Advances in design engineering and merits of electron transporting layers in perovskite solar cells, Mater. Horiz., 7 (9) (Jun 2020) 2276-91.
[9] G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem. A, 4 (11) (Jan. 2016) 3970-90.
[10] W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, C. Huang, Hole‐transporting materials in inverted planar perovskite solar cells, Adv. Energy Mater., 6 (17) (Sep. 2016) 1600474.
[11] S. M. Hashemi Nassab, M. Imanieh, A. Kamaly, The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency, Journal of Optoelectronical Nanostructures., 1 (1) (Jun 2016) 9-24.
[12] A. Mirkamali, Numerical simulation of CdS/CIGS tandem multi-junction solar cells with AMPS-1D, Journal of Optoelectronical Nanostructures, 2 (1) (Jan. 2017) 31-40.
[13] X. Sallenave, M. Shasti, E. H. Anaraki, D. Volyniuk, J. V. Grazulevicius, S. M. Zakeeruddin, A. Mortezaali, M. Grätzel, A. Hagfeldt, G. Sini, Interfacial and bulk properties of hole transporting materials in perovskite solar cells: Spiro-MeTAD versus spiro-OMeTAD, J. Mater. Chem. A, 8 (17) (Apr. 2020) 8527-8539.
[14] Y. Yang, M. T. Hoang, D. Yao, N. D. Pham, V. T. Tiong, X. Wang, H. Wang, Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells, J. Mater. Chem. A, 8 (25) (Jun 2020) 12723-12734.
[15] M. M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis‐less planar perovskite solar cell (21.4%) with enhanced open‐circuit voltage and stability, Adv. Energy Mater., 8 (23) (Aug. 2018) 1800794.
[16] Y. Chen, Q. Meng, L. Zhang, C. Han, H. Gao, Y. Zhang, H. Yan, SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress, J. Energy Chem., 35 (Aug. 2019) 144-167.
[17] L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO2 in perovskite solar cells, Adv. Funct. Mater., 28 (35) (Aug. 2018) 1802757.
[18] F. Anwar, R. Mahbub, S. S. Satter, S. M. Ullah, Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance, Int. J. Photoenergy, (Jan. 2017) 1-9.
[19] D. K. Jarwal, A. K. Mishra, A. Kumar, S. Ratan, A. P. Singh, C. Kumar, B. Mukherjee, S. Jit. Fabrication and TCAD simulation of TiO2 nanorods electron transport layer based perovskite solar cells, Superlattices Microstruct., 140 (Apr. 2020)106463.
[20] C. Li, S. Hou, Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application, MRS Online Proceedings Library (OPL), 1805 (Aug. 2015) mrss15–2124440.
[21] Q. Zhang, S. Hou, C. Li, Titanium dioxide-coated zinc oxide nanorods as an efficient photoelectrode in dye-sensitized solar cells, Nanomaterials., 10 (8) (Aug. 2020) 1598.
[22] A. M. Elseman, M. S. Selim, L. Luo, C. Y. Xu, G. Wang, Y. Jiang, D. B. Liu, L. P. Liao, Z. Hao, Q. L. Song, Efficient and Stable Planar n‐i‐p Perovskite Solar Cells with Negligible Hysteresis through Solution‐Processed Cu2O Nanocubes as a Low‐Cost Hole‐Transport Material, Chem. Sus. Chem., 12 (16) (Aug. 2019) 3808-3816.
[23] M. Shasti, A. Mortezaali, Numerical Study of Cu2O, SrCu2O2, and CuAlO2 as Hole‐Transport Materials for Application in Perovskite Solar Cells, Phys. Status Solidi A, 216 (18) (Sep. 2019) 1900337.
[24] L. C. Chen, C. C. Chen, K. C. Liang, S. H. Chang, Z. L. Tseng, S. C. Yeh, C. T. Chen, W. T. Wu, C. G. Wu, Nano-structured CuO-Cu2O complex thin film for application in CH3NH3PbI3 perovskite solar cells, Nanoscale Res. Lett., 11 (1) (Dec. 2016) 1-7.
[25] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films, Sci. Rep., 4 (1) (Feb. 2014)1-8.