[1] Barnes, William L., Alain Dereux, and Thomas W. Ebbesen. "
Surface plasmon subwavelength optics." nature 424.6950 (2003): 824-830. Available:
https://doi.org/10.1038/nature01937.
[2] Wu, Wenjun, et al. "
Ultra-high resolution filter and optical field modulator based on a surface plasmon polariton." Optics letters 41.10 (2016): 2310-2313.Available:
https://doi.org/10.1364/OL.41.002310
[3] Wu, Dong, et al. "
Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region." Optics letters 42.3 (2017): 450-453.Available:
https://doi.org/10.1364/OL.42.000450
[4] Yu, Yue, et al. "
Plasmonic wavelength splitter based on a metal–insulator–metal waveguide with a graded grating coupler." Optics letters 42.2 (2017): 187-190.
https://doi.org/10.1364/OL.42.000187
[5] Chen, Lei, et al. "
Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity." Optics express 24.9 (2016): 9975-9983.Available:
https://doi.org/10.1364/OE.24.009975
[6] Shen, Yang, et al. "
Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit." Nature communications 4.1 (2013): 2381, Available:
https://doi.org/10.1038/ncomms3381
[7] Srivastava, Triranjita, Ritwick Das, and Rajan Jha. "Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide." Plasmonics 8 (2013): 515-521.Available:
[9]Elsayed, Mohamed Y., Yehea Ismail, and Mohamed A. Swillam. "
Semiconductor plasmonic gas sensor using on-chip infrared spectroscopy." Applied Physics A 123.1 (2017): 113.Available:
https://doi.org/10.1007/s00339-016-0707-2
[10] Rosenzveig, Tiberiu, Petur G. Hermannsson, and Kristjan Leosson. "
Modelling of polarization-dependent loss in plasmonic nanowire waveguides." Plasmonics 5 (2010): 75-77.Available:
https://doi.org/10.1007/s11468-009-9118-y
[11] Zhang, Zhongyue, et al. "
Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide." Plasmonics 6 (2011): 773-778., Available:
https://doi.org/10.1007/s11468-011-9263-y
[12] Wei, Hong, et al. "
Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure." Nano Letters 15.1 (2015): 560-564.Available:
https://doi.org/10.1021/nl504018q
[13] Chen, Chyong-Hua, and Kao-Sung Liao. "
1xN plasmonic power splitters based on metal-insulator-metal waveguides." Optics express 21.4 (2013): 4036-4043.Available:
https://doi.org/10.1364/OE.21.004036
[15] Chen, Li, et al. "
A subwavelength MIM waveguide filter with single-cavity and multi-cavity structures." Optik-International Journal for Light and Electron Optics 124.18 (2013): 3701-3704., Available:
https://doi.org/10.1016/j.ijleo.2012.11.025
[16] Wu, Tiesheng, et al. "
The sensing characteristics of plasmonic waveguide with a ring resonator." Optics express 22.7 (2014): 7669-7677.Available:
https://doi.org/10.1364/OE.22.007669
[17] Lodewijks, Kristof, et al. "
Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications." Plasmonics 8 (2013): 1379-1385.Available:
https://doi.org/10.1007/s11468-013-9549-3
[18] Francescato, Yan, Vincenzo Giannini, and Stefan A. Maier. "
Plasmonic systems unveiled by Fano resonances." ACS nano 6.2 (2012): 1830-1838.Available:
https://doi.org/10.1021/nn2050533
[19] Hao, Feng, et al. "
Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing." ACS nano 3.3 (2009): 643-652.,Available:
https://doi.org/10.1021/nn900012r
[20] Rybin, Mikhail V., et al. "
Fano resonances in antennas: General control over radiation patterns." Physical Review B—Condensed Matter and Materials Physics 88.20 (2013): 205106.Available:
https://doi.org/10.1103/PhysRevB.88.205106
[21] Fan, Jonathan A., et al. "
Fano-like interference in self-assembled plasmonic quadrumer clusters." Nano letters 10.11 (2010): 4680-4685.Available:
https://doi.org/10.1021/nl1029732
[23] Zhang, Shunping, et al. "
Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications." Nanoscale 5.15 (2013): 6985-6991. Available:
https://doi.org/10.1039/C3NR01219K
[24] Gallinet, Benjamin, and Olivier JF Martin. "
Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures." ACS nano 7.8 (2013): 6978-6987.Available:
https://doi.org/10.1021/nn4021967
[25] Prodan, Emil, et al. "A hybridization model for the plasmon response of complex nanostructures." science 302.5644 (2003): 419-422.Available: 10.1126/science.1089171
[26] Wang, H. U. I., et al. "
Plasmonic nanostructures: artificial molecules." Accounts of chemical research 40.1 (2007): 53-62.Available:
https://doi.org/10.1021/ar0401045
[27] D’Agostino, Stefania, Fabio Della Sala, and Lucio Claudio Andreani. "
Radiative coupling of high-order plasmonic modes with far-field." Photonics and Nanostructures-Fundamentals and Applications 11.4 (2013): 335-344.Available:
https://doi.org/10.1016/j.photonics.2013.06.003
[28] Halas, Naomi J., et al. "
Plasmons in strongly coupled metallic nanostructures." Chemical reviews 111.6 (2011): 3913-3961.Available:
https://doi.org/10.1021/cr200061k
[29] Liu, Jui-Nung, et al. "
Resonant coupling from photonic crystal surfaces to plasmonic nanoantennas: principles, detection instruments, and applications in digital resolution biosensing." Smart Photonic and Optoelectronic Integrated Circuits XX. Vol. 10536. SPIE, 2018.Available:
https://doi.org/10.1117/12.2285828
[30] Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar. "
Fano resonances in nanoscale structures." Reviews of Modern Physics 82.3 (2010): 2257-2298.Available:
https://doi.org/10.1103/RevModPhys.82.2257
[31] Verellen, Niels, et al. "
Fano resonances in individual coherent plasmonic nanocavities." Nano letters 9.4 (2009): 1663-1667.Available:
https://doi.org/10.1021/nl9001876
[32] Sheikholeslami, Sassan, et al. "
Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer." Nano letters 10.7 (2010): 2655-2660.Available:
https://doi.org/10.1021/nl101380f
[33] Mukherjee, Shaunak, et al. "
Fanoshells: nanoparticles with built-in Fano resonances." Nano letters 10.7 (2010): 2694-2701.Available:
https://doi.org/10.1021/nl1016392
[34] Y." Sonnefraud, N. Verellen, H. Sobhani, GA E. Vandenbosch, VV Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, ibid 4 (2010): 1664.
[35] Chu, Ming-Wen, et al. "
Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam." Nano letters 9.1 (2009): 399-404.Available:
https://doi.org/10.1021/nl803270x
[36] Firoozi, A., Khordad, R., & Rastegar Sedehi, H. R. (2023).
Modelling of nanosensors based on localised surface plasmon resonance. Philosophical Magazine, 103(22), 2054-2071., Available:
https://doi.org/10.1080/14786435.2023.2255143
[37] Yang, Shu-Chun, et al. "
Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes." Nano letters 10.2 (2010): 632-637.Available:
https://doi.org/10.1021/nl903693v
[38] Firoozi, A., Amphawan, A., Khordad, R., Mohammadi, A., Jalali, T., Edet, C. O., & Ali, N. (2023).
Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application. Scientific Reports, 13(1), 11325. Available:
https://doi.org/10.1038/s41598-023-38475-1
[39] Firoozi, A., Khordad, R., & Rastegar Sedehi, H. R. (2024).
Study of enhanced sensitivity of nanosensors by using gold bowtie nanoparticles. Journal of Nonlinear Optical Physics & Materials, 33(05), 2350057. Available:
https://doi.org/10.1142/S0218863523500571
[40] Dehghani, M., Hatami, M., & Gharaati, A. (2021). Research Paper Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton. Journal of Optoelectronical Nanostructures, 6(4), 109-136. Available: 10.30495/JOPN.2022.28937.1236
[41] Mansuri, M., Mir, A., & Farmani, A. (2019). Numerical modeling of a nanostructure gas sensor based on plasmonic effect. Journal of Optoelectronical Nanostructures, 4(2), 29-44. Available: 20.1001.1.24237361.2019.4.2.3.3
[42] Farmani, A., Mir, A., & Sharifpour, Z. (2018).
Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Applied Surface Science, 453, 358-364. Available:
https://doi.org/10.1016/j.apsusc.2018.05.092
[43] Farmani, A., Miri, M., & Sheikhi, M. H. (2017).
Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B, 34(6), 1097-1106. Available:
https://doi.org/10.1364/JOSAB.34.001097
[44] Farmani, A. (2019).
Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B, 36(2), 401-407. Available:
https://doi.org/10.1364/JOSAB.36.000401
[45] Farmani, A., Zarifkar, A., Sheikhi, M. H., & Miri, M. (2017).
Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices and Microstructures, 112, 404-414. Available:
https://doi.org/10.1016/j.spmi.2017.09.051
[46] Moradiani, F., Farmani, A., Mozaffari, M. H., Seifouri, M., & Abedi, K. (2020).
Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Optics Communications, 474, 126178. Available:
https://doi.org/10.1016/j.optcom.2020.126178
[47] Hamzavi-Zarghani, Z., Yahaghi, A., Matekovits, L., & Farmani, A. (2019).
Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications. Optics Express, 27(24), 34824-34837. Available:
https://doi.org/10.1364/OE.27.034824
[48] Amoosoltani, N., Zarifkar, A., & Farmani, A. (2019).
Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. Journal of Computational Electronics, 18, 1354-1364. Available:
https://doi.org/10.1007/s10825-019-01391-7
[49] Sadeghi, T., Golmohammadi, S., Farmani, A., & Baghban, H. (2019).
Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Applied Physics B, 125, 1-12. Available:
https://doi.org/10.1007/s00340-019-7305-x
[50] Salehnezhad, Z., Soroosh, M., & Farmani, A. (2023).
Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diamond and Related Materials, 131, 109594. Available:
https://doi.org/10.1016/j.diamond.2022.109594
[51] Hamza, Musa N., et al. "Development of a Terahertz Metamaterial Micro-Biosensor for Ultrasensitive Multispectral Detection of Early-Stage Cervical Cancer." IEEE Sensors Journal (2024).Available: 10.1109/JSEN.2024.3447728
[52] Amoosoltani, N., Yasrebi, N., Farmani, A., & Zarifkar, A. (2020). A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sensors Journal, 20(16), 9097-9104. Available: 10.1109/JSEN.2020.2987319
[53] Khajeh, A., Hamzavi-Zarghani, Z., Yahaghi, A., & Farmani, A. (2021).
Tunable broadband polarization converters based on coded graphene metasurfaces. Scientific Reports, 11(1), 1296. Available:
https://doi.org/10.1038/s41598-020-80493-w
[54] Khani, S., Farmani, A., & Mir, A. (2021).
Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Scientific Reports, 11(1), 13628. Available:
https://doi.org/10.1038/s41598-021-93167-y
[55] Moradiani, F., Farmani, A., Yavarian, M., Mir, A., & Behzadfar, F. (2020).
A multimode graphene plasmonic perfect absorber at terahertz frequencies. Physica E: Low-dimensional Systems and Nanostructures, 122, 114159. Available:
https://doi.org/10.1016/j.physe.2020.114159
[56] Farmani, H., & Farmani, A. (2020).
Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E: Low-dimensional Systems and Nanostructures, 124, 114375. Available:
https://doi.org/10.1016/j.physe.2020.114375
[57] Fouladi, H., Farmani, A., & Mir, A. (2023). Rigorous Investigation of Ring Resonator Nanostructure for Biosensors applications in breast cancer detection. Journal of Optoelectronical Nanostructures, 8(4), 97-119. Available: 10.30495/JOPN.2024.32304.1299
[58] Hamza, Musa N., Mohammad Tariqul Islam, Slawomir Koziel, Muhamad A. Hamad, Iftikhar ud Din, Ali Farmani, Sunil Lavadiya, and Mohammad Alibakhshikenari. "Designing a High-sensitivity Microscale Triple-band Biosensor based on Terahertz MTMs to provide a perfect absorber for Non-Melanoma Skin Cancer diagnostic." IEEE Photonics Journal (2024). Available: 10.1109/JPHOT.2024.3381649
[59] Zangeneh, A. M. R., Farmani, A., Mozaffari, M. H., & Mir, A. (2022).
Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diamond and Related Materials, 125, 109005. Available:
https://doi.org/10.1016/j.diamond.2022.109005
[60] M. Soroosh, A. Mirali, E. Farshidi. Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators. Journal of Optoelectronical Nanostructures., 5(1) (2020) 83-100. Available: https://dorl.net/dor /20.1001.1.24237361.2020.5.1.6.1
[61] Khosravian, E., Mashayekhi, H. R., & Farmani, A. (2021). Highly
polarization-sensitive, broadband, low dark current, high responsivity graphene-based photodetector utilizing a metal nano-grating at telecommunication wavelengths. JOSA B, 38(4), 1192-1199. Available:
https://doi.org/10.1364/JOSAB.418804
[62] Jafrasteh, F., Farmani, A., & Mohamadi, J. (2023).
Meticulous research for design of plasmonics sensors for cancer detection and food contaminants analysis via machine learning and artificial intelligence. Scientific Reports, 13(1), 15349. Available:
https://doi.org/10.1038/s41598-023-42699-6
[64] Mohammadi, M., Soroosh, M., Farmani, A., & Ajabi, S. (2023).
Engineered FWHM enhancement in plasmonic nanoresonators for multiplexer/demultiplexer in visible and NIR range. Optik, 274, 170583. Available:
https://doi.org/10.1016/j.ijleo.2023.170583
[66] R. Zafar, M. Salim, IEEE Sensors Journal 15(11), 6313 (2015) Available: 10.1109/JSEN.2015.2455534
[67] R. Zafar, S. Nawaz, G. Singh, A. d’Alessandro, M. Salim, IEEE Sensors Journal (2018) Available: 10.1109/JSEN.2018.2826040
[69] B. Elyasi and S. Javahernia.
All optical digital multiplexer using nonlinear photonic crystal ring resonators. Journal of Optoelectronical Nanostructures., 7(1) (2022) 97-106. Available:
https://doi.org/10.30495/jopn.2022.29174.1242