First-Principles Study of Optical Aspects of Penta-Graphene and T-Carbon under External Stress and Hydrostatic Pressure

Document Type : Articles

Author

Department of Physics, Khatam Al-Anbia University, Tehran, Iran

Abstract

In this study, we present two new carbon nano allotropes: Penta-graphene and T-Carbon. Using first-principles calculations based on Density Functional Theory (DFT), we perform an extensive analysis of their crystalline structures. We delve into their optical properties, including a detailed assessment of the optical joint density of states and both the imaginary and real parts of the complex dielectric function. We also examine the reflectivity and absorption spectra to gain a full understanding of their optical characteristics. Our study takes into account special scenarios, such as the effects of hydrostatic pressure and vertical compressive stress. The shifts in optical properties we observe correlate well with the electronic characteristics of these nanostructures. Additionally, we explore the potential applications of these materials in various optoelectronic devices. Thus, we suggest their use in creating advanced optoelectronic devices, particularly as sensors designed for specific conditions, due to their unique and tunable optical properties.

Keywords


  1. N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Graphene Analogues of Inorganic Layered Materials, Angewandte Chemie International Edition, 52 (2013) 13162-13185. F. Diederich, M. Kivala, AllCarbon Scaffolds by Rational Design, Adv. Material, 22 (2010) 803. https://doi.org/10.1002/anie.201301548
  2. Hirsch, The era of carbon allotropes, Nature Materials, 9 (2010) 868. https://doi.org/10.1038/nmat2885
  3. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, G. Zou, Superhard Monoclinic Polymorph of Carbon, Physical Review Letters, 102 (2009) 175506. https://doi.org/10.1103/PhysRevLett.102.175506
  4. Umemoto, R.M. Wentzcovitch, S. Saito, T. Miyake, Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope, Physical Review Letters, 104 (2010) 125504.
  5. -T. Wang, C. Chen, Y. Kawazoe, Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon, Physical Review Letters, 106 (2011) 075501. https://doi.org/10.1103/PhysRevLett.106.075501
  6. Nayeri, P. Keshavarzian, M. Nayeri, A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube, Journal of Optoelectronic Nano Structures, 3 (2018) 15-26. https://dorl.net/dor/20.1001.1.24237361.2018.3.1.2.3
  7. -L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G. Su, T-Carbon: A Novel Carbon Allotrope, Physical Review Letters, 106 (2011) 155703. http://dx.doi.org/10.1103/PhysRevLett.106.155703
  8. Li, K. Bao, F. Tian, Z. Zeng, Z. He, B. Liu, T. Cui, Lowest enthalpy polymorph of cold-compressed graphite phase, Physical Chemistry Chemical Physics, 14 (2012) 4347-4350. https://doi.org/10.1039/C2CP24066A
  9. He, L. Sun, C. Zhang, X. Peng, K. Zhang, J. Zhong, Four superhard carbon allotropes: a first-principles study, Physical Chemistry Chemical Physics, 14 (2012) 8410-8414. https://doi.org/10.1039/C2CP40531H
  10. Alborznia, First-principle study of the strain compressive strain induced on optoelectronic aspects of 2-dimensional B2C nanostructure, Surface Review and Letters, 29 (2022) 2250078. https://doi.org/10.1142/S0218625X22500780
  11. Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-Graphene: A New Carbon Allotrope. Natl. Acad. Sci., 112 (2015) 2372. https://doi.org/10.1073/pnas.1416591112
  12. Alborznia, M. Naseri, N. Fatahi, Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure, Superlattices and Microstructures,133(2019) 106217. https://doi.org/10.1016/j.spmi.2019.106217
  13. Roohollahi, M. R. Shayesteh, M. Pourahmadi, Improved Perovskite Solar Cell Performance Using Semitransparent CNT Layer. Journal of Optoelectronic Nano Structures, 8 (2023) 32-46. https://doi.org/10.30495/jopn.2023.29770.1253
  14. Alborznia, M. Naseri, N. Fatahi, Pressure effects on the optical and electronic aspects of T-Carbon: A first principles calculation, Optik, 180 (2019) 125-133. https://doi.org/10.1016/j.ijleo.2018.11.077
  15. M. Hoat, Sh. Amirian, H. Alborznia, A. Laref, A.H. Reshak, M. Naseri, strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study, Indian Journal of physics, 95 (2021) 2365. https://doi.org/10.1007/s12648-020-01913-1
  16. Alborznia, DFT- based study of the strain variation effects on optical and electronic aspects of TH-carbon monolayer, International Journal of Modern Physics B, 38 (2024) 2450085. https://doi.org/10.1142/S0217979224500851
  17. Alborznia, S.T. Mohammadi, Biaxial stress and strain effects on optical and electronic aspects of B2C nanostructure: a first-principles calculation, Indian Journal of physics, 32 (2022). https://doi.org/10.1007/s12648-021-02272-1
  18. Giannozzi et al., J. Phys. Condens. Matter 21, 395502(2009); computer code QUANTUM-ESPRESSO, http://www.quantum-espresso.org
  19. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,K. Schwarz, An augmented PlaneWave+Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013) Wien2K users guide, ISBN 3-9501031-1-2.
  20. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-386. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
  21. Heyd, G.E. Scuseria , M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207. https://doi.org/10.1063/1.1564060
  22. J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13 (1976) 5188-5192. https://link.aps.org/doi/10.1103/PhysRevB.13.5188
  23. Ehrenreich, M.H. Cohen, Self-Consistent Field Approach to the Many-Electron Problem, Phys. Rev. 115 (1959) 786-790. https://link.aps.org/doi/10.1103/PhysRev.115.786
  24. Birch, Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain, J. Geophys. Res. B 83 (1978) 1257-1268. https://doi.org/10.1029/JB091iB05p04949
  25. Abt, C. Ambrosch-Draxl, P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B: Condensed Matter, 194-196 (1994) 1451-145. http://www.sciencedirect.com/science/article/pii/0921452694912254
  26. Damizadeh, M. Nayeri, F. Kalantari Fotooh, S.fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study, Journal of Optoelectronic Nano Structures, 5 (2020) 67-86. https://dorl.net/dor/20.1001.1.24237361.2020.5.4.5.6
  27. Amirian, H. Alborznia, S. Yalameha, First-principles study on the stability and optoelectronic properties of the novel C6O2 nanostructure, Solid State Communications, 394 (2024) 115693. https://doi.org/10.1016/j.ssc.2024.115693
  28. R. Yahyazadeh, Z. Hashempour. Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells, Journal of Optoelectronic Nano Structures, 8 (2023) 81-107. https://doi.org/10.30495/jopn.2021.27941.1221
  29. Alborznia, S. Amirian, M. Nazirzadeh, Buckling variation effects on optical and electronic properties of GeP2S nanostructure: a first-principles calculation, Opt. Quant. Electron.  54 (2022) 608.  https://doi.org/10.1007/s11082-022-04055-2
  30. Salehi, F. A. Hoseini, First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase, Journal of Optoelectronic Nano Structures, 4 (2019) 69-82. https://dorl.net/dor/20.1001.1.24237361.2019.4.2.6.6