Electric Field and Impurity Effects on the Electronic Levels and Optical Properties of Spherical Segment Quantum Dot/Wetting Layer Interacted with Two Laser Fields

Document Type : Articles

Authors

Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

Abstract

Abstract
We calculate electronic levels of spherical segment quantum dot on top of wetting layer with and without hydrogenic impurity interacted with external electric field numerically. Results show that as the electric field increases, the three lowest level energies decrease. The binding energy of the ground (first excited) state of the system decreases (increases) as the electric field increases. Then we consider the system influenced by two laser fields and investigate the optical properties of the system at the electric field. As results show, the linear and nonlinear absorptions and dispersions of the probe pulse shift to higher frequencies as the electric field increases. For the certain electric field, the optical properties reduce and shift toward higher frequencies when impurity is added. Finally, the group velocity of the probe pulse in the system is calculated. As the electric field increases, the slow light frequency range transfers to the higher probe frequencies.

Keywords


[1] W. Wang, J. Wang, Zh. Cheng, Z. Yang, H. Yin, X. Ma, Y. Zhang, M. Yang, H. Hu, Y. Huang, X. Numerical Analysis of the Electrically Pumped 1.3 μm InAs/InGaAs Quantum Dot Microdisk Lasers on Silicon with an Output Waveguide. Ren, Physica E [Online]. 108 (2019, Apr.) 404-410. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947718308361
[2] N. N. Ledentsov, V. A. Shchukin, Yu. M. Shernyakov, M. M. Kulagina, A. S. Payusov, N. Yu. Gordeev, M. V. Maximov, A. E. Zhukov, L. Ya. Karachinsky, T. Denneulin, N. Cherkashin. Room Temperature Yellow InGaAlP Quantum Dot Laser. Solid State Electron. [Online]. 155 (2019, May) 129-138. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038110118305549
[3] A. A. Rajhi, K. M. Abd Alaziz et al. Enhancing the performance of quantum dot solar cells through halogen adatoms on carboxyl edge-functionalized graphene quantum dots. Journal of Photochemistry and Photobiology A [Online]. 447 (2024, Jan.) 115240. Available: https://www.sciencedirect.com/science/article/abs/pii/S1010603023007050
[4] D. H. Phuc, H. T. Tung. Quantum dot sensitized solar cell based on the different photoelectrodes for the enhanced performance. Sol. Energ. Mat. Sol. C. [Online]. 196 (2019, Jul.) 78–83. Available: https://www.sciencedirect.com/science/article/abs/pii/S0927024819301576
[5] S. Siontas, D. Li, H. Wang, A. A.V.P.S, A. Zaslavsky, D. Pacifici. High-performance germanium quantum dot photodetectors in the visible and near infrared. Mat. Sci. Semicon. Proc. [Online]. 92 (2019, Mar.) 19–27. Available: https://www.sciencedirect.com/science/article/abs/pii/S1369800118301896
[6] I. S. Han, J. S. Kim, J. Ch. Shin, J. O. Kim, S. K. Noh, S. J. Lee, S. Krishna. Photoluminescence study of InAs/InGaAs sub-monolayer quantum dot infrared photodetectors with various numbers of multiple stack layers. J. Lumin. [Online]. 207 (2019, Mar.) 512-519. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231318313048
[7] V. G. Reshma, P. V. Mohanan. Quantum dots: Applications and safety consequences. J. Lumin. [Online]. 205 (2019, Jan.) 287-298. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231318313334
[8] M. Servatkhah, P. Hashemi, R. Pourmand. Binding energy in tuned quantum dots under an external magnetic field. J. of Optoelectronical Nano Structures. [Online]. 7(4) (2022, Nov.) 49-65. Available: https://jopn.marvdasht.iau.ir/article_5677.html
[9] F. Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad. Study the energy states and absorption coefficients of quantum dots and quantum anti-dots with hydrogenic impurity under the applied magnetic field. J. of Optoelectronical Nano Structures. [Online]. 7(1) (2022, Jan.) 1-18. Available: https://jopn.marvdasht.iau.ir/article_5091.html
[10] A. Jahanshir. Quanto-Relativistic Background of Strong Electron-Electron Interactions in Quantum Dots under magnetic field. J. of Optoelectronical Nano Structures. [Online]. 6(3) (2021, Aug.) 1-24. Available: https://jopn.marvdasht.iau.ir/article_4972.html
[11] M. ZekavatFetrat, M. Sabaeian, Gh. Solookinejad. The effect of ambient temperature on the linear and nonlinear optical properties of truncated pyramidal-shaped InAs/GaAs quantum dot. J. of Optoelectronical Nano Structures. [Online]. 6(3) (2021, Aug.) 81-92. Available: https://jopn.marvdasht.iau.ir/article_4980.html
[12] H. Bahramiyan, S. Bagheri. Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect. J. of Optoelectronical Nano Structures. [Online]. 3(3) (2018, Sep.) 79-100. Available:
[13] D. Leonard, K. Pond, P. M. Petroff. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B [Online]. 50 (1994, Oct.) 11687–11692. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.50.11687
[14] M. Dezhkam, A. Zakery. Electronic properties of hemispherical quantum dot/wetting layer with and without hydrogenic donor impurity. Phys. B [Online]. 443 (2014, Jun.) 70-75. Available: https://www.sciencedirect.com/science/article/abs/pii/S0921452614001859
[15] M. Dezhkam, A. Zakery, A. Keshavarz, Chin. Opt. Lett. 14 (2016) 121904.
[16] Z. Ghafarizadeh Jahromi, M Dezhkam. Temperature and hydrostatic pressure effects on the electronic structure, optical properties of spherical segment quantum dot/wetting layer and group velocity of light. Laser Phys. [online]. 30 (2020) 055402. Available: https://doi.org/10.1088/1555-6611/ab8299
[17] M. Moradi, M. Moradi. The effects of temperature and electric field on the electronic and optical properties of an InAs quantum dot placed at the center of a GaAs nanowire. J. of surface investigation [online]. 16 (2022) 1237-1247. Available: https://link.springer.com/article/10.1134/S1027451022060428

[18] L. Belamkadem, O. Mommadi et al. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots. Thin Solid Films [online]. 757 (2022, Sep.) 139396. Available: https://www.sciencedirect.com/science/article/abs/pii/S0040609022003108

[19] V. D. Krevchik, A. V. Razumov et al. Influence of an external electric field and dissipative tunneling on recombination radiation in quantum dots. Sensors [online]. 22(4) (2022) 1300. : https://doi.org/10.3390/s22041300 , https://www.mdpi.com/1424-8220/22/4/1300
[20] K. Li, L. Wei, Y. Hu, H. Yin, Z. Li, Z. Chen. Electric field effect on anisotropic nonlinear optical properties of GaN/AlN quantum dots with multitype-tunable shape. Optics & Laser Technology [online]. 158 (2023, Feb.) 108797. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030399222009434
[21] M. K. Bahar, P. Baser. The second, third harmonic generations and nonlinear optical rectification of the Mathieu quantum dot with the external electric, magnetic and laser field. Phys. B [online]. 665 (2023, Sep.) 415042. Available: https://www.sciencedirect.com/science/article/abs/pii/S092145262300409X
[22] V. Pavlović, L. Stevanović. Group velocity of light in a three level ladder-type spherical quantum dot with hidrogenic impurity. Superlattice. Microst. [Online]. 100 (2016, Dec.) 500-507. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603616308448
[23] B. Behroozian, H. R. Askari, M. R. Rezaie. Light group velocity in quantum dots under electromagnetically induced transparency by using second quantization formalism. Optik [online]. 226 (2021, Jan.)  165907. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030402620317241
[24] S. S. Li, J. B. Xia, Z. L. Yuan, Z. Y. Xu. Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys. Rev. B [Online]. 54 (1996, Oct.) 11575–11581. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.11575
[25] Y. T. B. Ali, G. Bastard, R. Bennaceur. Ground state transition energies in biased InAs/GaAs quantum dots. Phys. E [Online]. 27 (2005) 67–76. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947704005314
[26] E. H. Li. Material parameters of InGaAsP and InAlGaAs systems for use
in quantum well structures at low and room temperatures. Phys. E [Online]. 5 (2000) 215-273. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947799002623
[27] W. X. Yang, R. K. Lee. Slow optical solitons via intersubband transitions in a semiconductor quantum well. Eur. Phys. Lett. [Online]. 83 (2008, Jul.) 14002. Available: https://iopscience.iop.org/article/10.1209/0295-5075/83/14002/pdf
[28] W. Yan, T. Wang, X. M. Li. Theoretical ultraslow bright and dark optical solitons in cascade-type GaAs/AlGaAs multiple quantum wells. Opt. Commun. [Online]. 285 (2012) 3559–3562. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401812003689
[29] S. Ünlü, İ. Karabulut, H. Şafak. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Phys. E [Online]. 33(2) (2006, Jul.) 319-324. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947706002669
[30] P. W. Milonni, slow light, in Fast Light, Slow Light and Left-Handed Light, IOP Publishing, Bristol and Philadelphia, 2005, 144-172.
[31] M. Bayer, A. Forchel. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B [Online]. 65(4) (2002, Jan.) 041308(R). Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.65.041308