Defective HfS2 nanoribbons: the influence of vacancy defects and different atoms at the edge on this material with the first principle calculations

Document Type : Articles

Authors

1 Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2 Department of Electrical Engineering, Zarghan Branch, Islamic Azad University, Zarghan, Iran

Abstract

Abstract:
Recently, various outstanding two-dimensional (2D) semiconductors have been studied. Some experimental and theoretical research works reveal that 2D-HfS2 can be a good candidate to substitute with the silicon in nanoelectronics due to its acceptable band gap. First, the influence of different edge atoms i.e. H (hydrogen) and O (oxygen) on two zigzag and armchair HfS2 nanoribbons is investigated with the first principle calculations.  Second, various types of vacancy defects such as 1Hf, 2Hf, 1S, 2S-1, 2S-2, 2S-3, 3S-1, 3S-2, 6S, and 1Hf+1S are applied to the pristine zigzag and armchair nanoribbon structures to investigate their electronic and transport behaviors changes. The calculated results reveal that all edge passivated structures are stable while the edge passivated structures with hydrogen atoms are more energy favorable. Moreover, some zigzag defective structures behave as metal while the armchair ones are semiconductor. The electronic property of HfS2 material is promising for its future applications in nanoelectronics.

Keywords


[1] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353 (6298), (2016), 9439, doi:10.1126/science.aac9439.
[2] S. Karimi Khorrami, M. Berahman, M. Sadeghi, Carbon Monoxide Gas Sensor Based on ZrSe2 monolayer nanosheet, Journal of Optoelectronical Nanostructures, 7(1), (2022), pp. 55-66, doi: 10.30495/jopn.2022.29652.1250.
[3] C. Yan, L. Gan, X. Zhou, J. Guo, W. Huang, J. Huang, B. Jin, J.  Xiong, T. Zhai, Y. Li, Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. (2017), 27, 1702918, https://doi.org/10.1002/adfm.201702918.
[4] M. Mattinen, G. Popov, M. Vehkamaki, P. J. King, K. Mizohata, P. Jalkanen, J. Raisanen, M. Leskelä, M. Ritala, Atomic layer deposition of emerging 2d semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. (2019), 31, 5713−5724, https://doi.org/10.1021/acs.chemmater.9b01688.
[5] K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics (2016), 10, 216−226, doi:10.1038/nphoton.2015.282.
[6] D. Wang, X. Zhang, Z. Wang, Recent advances in properties, synthesis and applications of two-dimensional HfS2. J. Nanosci. Nanotechnol. (2018), 18, 7319−7334, https://doi.org/10.1166/jnn.2018.16042.
[7] U. Erkılıc, P. Solís-Fernández, H. G. Ji, K. Shinokita, Y. C. Lin, M. Maruyama, K. Suenaga, S. Okada, K. Matsuda, H. Ago, Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl. Mater. Interfaces, (2019), 11, 40503−40511, https://doi.org/10.1021/acsami.9b13904.
[8] J. Kang, H. Sahin, F. M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. (2015), 17, 27742−27749, https://doi.org/10.1039/C5CP04576B.
 [9] Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. physica status solidi (b) (2017), 254, 1700033, http://dx.doi.org/10.1002/pssb.201700033.
[10] S. Bahrami, O. Bahrami, Giant enhancement of second harmonic generation efficiency from monolayer group-VI transition metal dichalcogenides  embedded in 1D photonic crystals, Journal of Optoelectronical Nanostructures, 7(1), (2022), pp. 67-96, doi: 10.30495/jopn.2022.28839.1234.
[11] M. Abdulsalam, D. P. and Joubert, Optical spectrum and excitons in bulk and monolayer MX2 (M_Zr, Hf; X_S, Se). Phys. Status Solidi B 253 (4), (2016), 705–711. doi:10.1002/pssb.201552584.
[12] C. Cheng, J. T.  Sun, X. R. Chen, S. and Meng, Hidden spin polarization in the 1 T -phase layered transition-metal dichalcogenides MX 2 (M_ Zr, Hf; X _S, Se, Te). Sci. Bull. 63 (2), (2018), 85–91. doi:10.1016/j.scib.2017.12.003.
[13] M. Salavati, Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Front. Struct. Civ. Eng. 13 (2), (2018), 486–494. doi:10.1007/s11709-018-0491-5.
[14] H. S. Tsai, J. W. Liou, I. Setiyawati, K. R. Chiang, C. W. Chen, C. C. Chi, et al., Photoluminescence characteristics of multilayer HfSe2 synthesized on sapphire using ion implantation. Adv. Mater. Interfaces. 5 (8), (2018), 1701619. doi:10.1002/admi.201701619.
[15] M. J. Mleczko, C. F. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Kope, R. G. Moore, et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3 (8), (2017), 1700481. doi:10.1126/sciadv.1700481.
[16] S. Mangelsen, P. G. Naumov, O. I. Barkalov, S. A. Medvedev, W. Schnelle, M. Bobnar, et al., Large non saturating magneto resistance and pressure induced phase transition in the layered semimetal HfTe2. Phys. Rev. B 96 (20), (2017), 205148. doi:10.1103/physrevb.96.205148.
[17] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9 (10), (2014), 768–779. doi:10.1038/nnano.2014.207.
[18] X. R. Nie, B. Q. Sun, H. Zhu, M. Zhang, D. H. Zhao, L. Chen, et al., Impact of metal contacts on the performance of multilayer HfS2 field-effect transistors. ACS Appl. Mater. Interfaces. 9 (32), (2017), 26996–27003. doi:10.1021/acsami.7b06160.
[19] L. Yin, K. Xu, Y. Wen, Z. Wang, Y. Huang, F. Wang, et al., Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 109 (21), (2016), 213105. doi:10.1063/1.4968808.
[20] N. Wu, X. Zhao, X. Ma, Q. Xin, X. Liu, T. Wang, et al., Strain effect on the electronic properties of 1T-HfS2 monolayer. Phys. E Low-dimens. Syst. Nanostruct. 93, (2017), 1–5. doi:10.1016/j.physe.2017.05.008.
[21] Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, and X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi (B) 254 (9), (2017), 1700033, doi:10.1002/pssb.201700033.
[22] Y. Nakata, K. Sugawara, A. Chainani, K. Yamauchi, K. Nakayama, S. Souma, et al., Dimensionality reduction and band quantization induced by potassium intercalation in 1T−HfTe2. Phys. Rev. Mater. 3 (7), (2019), 071001. doi:10.1103/physrevmaterials.3.071001.
[23] P. Yan, G. y. Gao, G. q. Ding, and D. Qin, Bilayer MSe2 (M _ Zr, Hf) as promising two-dimensional thermoelectric materials: a first-principles study. RSC Adv. 9 (22), (2019), 12394–12403. doi:10.1039/c9ra00586b.
 [24] P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (3B), (1964), B864–B871, DOI: 10.1103/physrev.136.b864.
[25] J. P. Perdew, and Y. Wang, Erratum: accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 98 (7), (2018), 079904, DOI: 10.1103/physrevb.98.079904.
[26] M. Ernzerhof, and G. E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 110 (11), (1999), 5029–5036, DOI: 10.1063/1.478401.
[27] T. Niazkar, G. Shams, Z. soltani, Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2)orthorhombic Polymorphs: DFT Study, Journal of Optoelectronical Nanostructures, 6(3), (2021), pp. 93-116. doi: 10.30495/jopn.2021.28945.1237.
[28] M. R. Dehghan, S. ahmadi, Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures (M=Be, Mg, and Ca): A DFT Study, Journal of Optoelectronical Nanostructures, 6(1), (2021), pp. 1-20. doi: 10.30495/jopn.2021.4538.
[29] M. Askaripour Lahiji, A. Abdolahzadeh Ziabari, Ab–initio study of the electronic and optical traits of Na0.5Bi0.5TiO3 nanostructured thin film, Journal of Optoelectronical Nanostructures, 4(3), (2019), pp. 47-58, https://dorl.net/dor/20.1001.1.24237361.2019.4.3.4.6.
[30] D. R Hartree, The wave mechanics of an atom with a non-coulomb central field, Proc. Camb. Phil. Soc 24, (1928) 89-110, doi:10.1017/S0305004100011919.
[31] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, (1964), B 864-B 871, doi:10.1103/PhysRev.136.B864.
[32] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, (1965), A1133-A1138, doi: 10.1103/PhysRev.140.A1133.
[33] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, (1996), 3865-3868, doi: 10.1103/PhysRevLett.77.3865.
[34] TMD Huynh, DK Nguyen, TDH Nguyen, VK Dien, HD Pham, M-F Lin, Geometric and Electronic Properties of Monolayer HfX2 (X _ S, Se, or Te): A First-Principles Calculation. Front. Mater. 7:569756, (2021), doi: 10.3389/fmats.2020.569756.
[35] S. Jamalzadeh Kheirabadi, F. Behzadi, M. Sanaee, The effect of edge passivation with different atoms on ZrSe2 nanoribbons. Sensors and Actuators A: Physical, Volume 317, (2021), 112471, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2020.112471.
[36] S. Jamalzadeh Kheirabadi, R. Ghayour, M. Sanaee, Negative differential resistance effect in different structures of armchair graphene nanoribbon, Diamond and Related Materials, Volume 108, (2020), 107970, ISSN 0925-9635, https://doi.org/10.1016/j.diamond.2020.107970.