Investigation of Population Transfer in the Two Coupled Λ-Type Three-Level Systems Based on Stimulated Raman Adiabatic Passage

Document Type : Articles

Authors

1 Department of Physics, Shiraz University of Technology, P.O. Box 313-71555 Shiraz, Iran

2 Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Tehran, Iran

Abstract

Abstract
Efficient and coherent transfer of population between different quantum states. In this study, we delve into the investigation of population transfer in two coupled Λ-type three-level systems using the STIRAP technique. Our research focuses on understanding the dynamics and control of population transfer within these systems. The system Hamiltonian is constructed based on the physical condition of the coupled structure, then the respective time-dependent Schrodinger equation is solved numerically. By analyzing the adiabatic conditions, we explore the interaction between the two coupled Λ-type systems examine the role of various parameters, such as the time of the peak amplitude, and determine the pulse width. Furthermore, we observe the impact of interaction on the transition probability, comparing coupled systems to uncoupled systems. The findings of this study shed light on the underlying mechanisms of STIRAP and contribute to the development of advanced quantum control techniques.

Keywords


  1. Kuhn, K. Bergmann, H. Naegerl, C. Panda, “Roadmap on STIRAP applications. J. Phys. B At. Mol. Opt. Phys, 52 (2019), 20. Available: https://iopscience.iop.org/article/10.1088/1361-6455/ab3995
  2. Hosseini and F. Sarreshtedari; “Investigation of the laser-controlled Landau–Zener mechanism in a coupled quantum system”. J. Opt. Soc. Am. B 34, No. 10 (2017), 2097. Available: http://sciencedirect.com/science/article/abs/pii/S0030402619314184
  3. Sarreshtedar and M. Hosseini; “Tunable Landau-Zener transitions using continuous-and chirped-pulse-laser couplings”. Phys. Rev A A 95, No. 3 (2017), 033834, 6. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.033834
  4. Ghaedi , M. Hosseini, F. Sarreshtedari; “Population change in the fine structure levels of cesium atoms using chirped laser”. JOPN, No. 2 (2017), 2. Available: https://journals.marvdasht.iau.ir/article_2423.html
  5. Král, I. Thanopulos and M. Shapiro; “Colloquium: Coherently controlled adiabatic passage”.Rev. Mod. Phys. 79, No. 1 (2007), 53. Available:  https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.53
  6. Ruschhaupt, X. Chen, D. Alonso and J. G. Muga; “Optimally robust shortcuts to population inversion in two-level quantum systems”. New J. Phys. 14, No. 9 (2012), 1367. Available: https://iopscience.iop.org/article/10.1088/1367-2630/14/9/093040
  7. Ahmadinouri, M. Hosseini, F. Sarreshtedari; “Stimulated Raman adiabatic passage: Effects of system parameters on population transfer”. Chem. Phys. 539, No. 10 (2020), 110960. Available: https://doi.org/10.1016/j.chemphys.2020.110960
  8. A. Malinovskaya; Laser cooling using adiabatic rapid passage”. Front. Phys. 16, No. 5 (2021), 52601. Available: https://link.springer.com/article/10.1007/s11467-021-1071-z
  9. Bause, A. Schindewolf, R. Tao, M. Duda, X.-Y. Chen, G. Quemener, T. Karman, A. Christianen, I. Bloch, X.-Y. Luo; Collisions of ultracold molecules in Bright and Dark optical dipole traps”.Phys.rev. res. 3, No. 1 (2021), 033013. Available:  https://doi.org/10.1103/PhysRevResearch.3.033013
  10. Ospelkaus, A. Pe’er, K. K. Ni, J. J Zirbel., B. Neyenhuis, S. Kotochigova, P. S. Julienne, J. Ye, D. S. Jin; Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nat. Phys. 4, No. 8 (2008), 622. Available: https://pubmed.ncbi.nlm.nih.gov/18801969/
  11. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J Aldegunde, J. M. Hutson, H. C. Nägerl; An ultracold high-density sample of rovibronic groundstate molecules in an optical lattice”. Nat. Phys. 6, (2010), 265. Available: https://www.nature.com/articles/nphys1533
  12. Christakis, J. S. Rosenberg, D. A.  Huse, Z. Z.  Yan, W. S. Bakr; Probing site-resolved correlations in a spin system of ultracold molecules. Nature. 614, (2023), 64. Available:     
    https://doi.org/10.48550/arXiv.2207.09328
  13. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, S. L. Zhu; Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms. Nat. Commun.7, (2016), 12479. Available: https://www.nature.com/articles/ncomms12479
  14. Dupont-Nivet, M. Casiulis, T. Laudat, C.I. Westbrook, S. Schwartz; Microwavestimulated Raman adiabatic passage in a Bose-Einstein condensate on an atom chip”; Phys. Rev. A 91, No .5 (2015), 053420. Available: https://doi.org/10.1103/PhysRevA.91.053420
  15. Morsch, M. Oberthaler; Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, (2006), 179. Available: https://doi.org/10.1103/RevModPhys.78.179
  16. Rousseaux, S. Guérin, N.V. Vitanov; “Arbitrary qubit gates by adiabatic passage”; Physical Review A 87, No. 3 (2013), 032328. Available: https://doi.org/10.1103/PhysRevA.87.032328
  17. K. Xu, C. Song, W.Y. Liu, G.M. Xue, F.F. Su, H. Deng, Y. Tian, D.N. Zheng, S. Han, Y.P. Zhong, H. Wang, Y. Liu, S.P. Zhao; “Coherent population transfer between uncoupled or weakly coupled states in ladder- type superconducting qutrits”; Nature Communications 7, No. 12 (2016), 11018. Available: https://www.nature.com/articles/ncomms11018
  18. S. Kumar, A. Vepsäläinen, S. Danilin, G.S. Paraoanu; Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 7 (1) (2016), 10628. Available: https://doi.org/10.1038/ncomms10628
  19. Siewert, T. Brandes, G. Falci; Adiabatic passage with superconducting nanocircuits. Opt. Commun, 264, (2006), 435. Available: https://doi.org/10.1016/j.optcom.2005.12.083
  20. Zheng, Y. Zhang, Y. Dong, J. Xu, Z. Wang, X. Wang, Y. Li, D. Lan, J. Zhao, S. Li, X. Tan, Y. Yu; Optimal control of stimulated Raman adiabatic passage in a superconducting qudit, Npj. Quantum. Inf .8, (2022), 9. Available: https://doi.org/10.1002/adfm.201804004
  21. Moftakharzadeh, B. Afkhami Aghda, M. Hosseini; “Noise Equivalent Power Optimization of Graphene-Superconductor Optical Sensors in the Current Bias Mode”, JOPN, No.3, (2018) ,6. Available: https://jopn.marvdasht.iau.ir/article_3040.html
  22. R. Mohebbifar; “Study of the Purcell Factor of a Single Photon Source Based on Quantum Dot Nanostructure for Quantum Computing Applications”, JOPN, No.4 (2021) ,6. Available:      https://jopn.marvdasht.iau.ir/article_5052.html
  23. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann; “Population transfer between molecular vibrational levels. A new concept and experimental results”, J. Chem. Phys. 92, (1990), 5363. Available:  https://doi.org/10.1063/1.458514
  24. Bergmann, H. Theuer, B.W. Shore; Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, No. 3 (1998), 1003. Available: https://doi.org/10.1103/RevModPhys.70.1003
  25. Domenikou, I. Thanopulos, D. Stefanatos, V. Yannopapas, E. Paspalakis; “Efficient Population Transfer in a Λ-Type Quantum System Coupled to a Gold Nanoparticle Using STIRAP Shortcuts”, Ann. Phys. 535, (2023), 2200478. Available:https://doi.org/10.1002/andp.202200478T. TorosovG. Della ValleS. Longhi.,Non-Hermitian shortcut to stimulated Raman adiabatic passage”. Phys. Rev A 89, No. 6, (2014), 063412. Available: https://doi.org/10.1103/PhysRevA.89.063412