A Comparative Study of BSF Layers for InGaN Single-Junction and Multi-Junction Solar Cells

Document Type : Articles

Authors

1 Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

2 Shahid Beheshti University, Tehran, Iran

Abstract

Abstract
The tunability of the InGaN band gap energy over a wide range provides a noble spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The ineffectiveness of single junction solar cell to convert solar full spectrum into electrical energy leads to transparency loss in addition with excess excitation loss. An efficient BSF layer is an essential structural element to attain high efficiency in solar cells. In this work the impact of the BSF layer for InGaN single-junction and multi-junction solar cells is studied using the computational numerical modeling with Silvaco ATLAS simulation technique. The open circuit voltage (Voc) and circuit current density (Jsc) characteristics of the simulated cells and the variation of external quantum efficiency as a function of solar cell structures have been studied. For the optimized cell structure, the maximum Jsc = 14.6 mA/cm2, Voc = 3.087 V, and fill factor (FF) = 88.15% are obtained under AM1.5G illumination, exhibiting a maximum conversion efficiency of 36.1%.

Keywords


  1.  Alahyarizadeh, G., et al. Performance of deep violet InGaN double quantum wells laser diodes with quaternary superlattice barriers structure, Journal of Renewable Energy and Environment. 9(1) (2022) 106-111. Available: https://doi.org/10.30501/jree.2021.300112.1246
  2.  Amirhoseiny, M., et al. Enhancement of deep violet InGaN double quantum wells laser diodes performance characteristics using superlattice last quantum barrier. Journal of Optoelectronical Nanostructures. 6(2) (2021) 107-120. Available: https://doi.org/10.30495/jopn.2021.4776
  3.  Yahyazadeh, Rajab, and Zahra Hashempour. Non-radiative Auger Current in a InGaN/GaN Multiple Quantum Well Laser Diode under Hydrostatic Pressure and Temperature. Journal of Optoelectronical Nanostructures 8(2) (2023) 81-107. Available: 10.30495/JOPN.2023.31803.1289
  4.  Alahyarizadeh, G and Amirhoseiny, M. Performance characteristics of deep violet InGaN DQW lasers based on different compliance layers. Optik, 131 (2017), 194-200. Available: https://doi.org/10.1016/j.ijleo.2016.11.093
  5.  Singh, K.J., et al., Numerical simulation model of compositionally graded optimized radiation hard InGaN multi-junction space solar cell. Presented at SEISCON 2011. [online]. Available: https://doi.org/10.1049/cp.2011.0453
  6.  Alahyarizadeh, G., et al. Effect of different EBL structures on deep violet InGaN laser diodes performance. Optics & Laser Technology, 76 (2016) 106-112. Available: https://doi.org/10.1016/j.optlastec.2015.08.007
  7.  Alahyarizadeh, G., et al.  Performance enhancement of deep violet InGaN double quantum wells laser diodes with quaternary superlattice barriers structure. Journal of Renewable Energy and Environment, 9(1) (2022). 106-111. Available:  https://doi.org/10.30501/jree.2021.300112.1246
  8.  Amirhoseiny, M., et al. Effect of annealing temperature on IR-detectors based on InN nanostructures. Vacuum, 106 (2014). 46-48. Available: https://doi.org/10.1016/j.vacuum.2014.03.010
  9.  Al-Ezzi, et al, Photovoltaic Solar Cells: A Review. Applied System Innovation. 5(4), (2022) 67. Available: https://doi.org/10.3390/asi5040067
  10.  Xu, Tao, and Luping Yu. How to design low bandgap polymers for highly efficient organic solar cells. Materials today 17(1) (2014) 11-15. Available: https://doi.org/10.1016/j.mattod.2013.12.005
  11.  Yahyazadeh, R., & Hashempour, Z. Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures, 6(2) (2021). 1-22. Available: 10.30495/JOPN.2021.27941.1221 
  12.  Verma, Manish, Soumya R. Routray, and Guru Prasad Mishra. "Analysis and optimization of BSF layer for highly efficient GaInP single junction solar cell." Materials Today: Proceedings 43 (2021) 3420-3423. Available: https://doi.org/10.1016/j.matpr.2020.09.073
  13.  Fotis, Konstantinos. Modeling and simulation of a dual-junction CIGS solar cell using Silvaco ATLAS. Diss. Monterey, California. Naval Postgraduate School, 2012.
  14.  Bouanani, B., et al. Band gap and thickness optimization for improvement of CIGS/CIGS tandem solar cells using Silvaco software. Optik 204 (2020)164217. Available: https://doi.org/10.1016/j.ijleo.2020.164217
  15.  Sefidgar, Yagub, Hassan Rasooli Saghai, and Hamed Ghatei Khiabani Azar. "Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures 4(2) (2019) 83-102. Available: 20.1001.1.24237361.2019.4.2.7.7
  16.  Galiana, B., et al., A comparative study of BSF layers for GaAs-based single-junction or multijunction concentrator solar cells. Semiconductor science and technology. 21(10) (2006)1387. Available: https://doi.org/10.1088/0268-1242/21/10/003
  17.  Huang, Xuanqi. Design and development of high performance III-nitrides photovoltaics. Diss. Arizona State University, 2020.
  18.  Raman, Ashish, Chetan Chaturvedi, and Naveen Kumar. Multi‐Quantum Well‐Based Solar Cell. Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions (2021) 351-372. Available: https://doi.org/10.1002/9781119755104.ch19
  19.  Madani, Homa Hashemi, Mohammad Reza Shayesteh, and Mohammad Reza. A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures. 6(1) (2021) 71-86. Available: 10.30495/JOPN.2021.4541
  20.  Emery, K., Photovoltaic efficiency measurements. In Organic Photovoltaics V. 5520 (2004) 36-44. SPIE. Available: https://doi.org/10.1117/12.562712
  21.  Hashemi Nassab, Sayed Mohammad Sadegh, Mohsen Imanieh, and Abbas Kamaly. The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency. Journal of Optoelectronical Nanostructures 1(1) (2016) 9-24. Available: 20.1001.1.24237361.2016.1.1.2.9
  22.  Jacob, N., et al., Numerical device modeling for direct Z-scheme junctions using a solar cell simulator. Solar Energy, 259 (2023). 320-327. Available: https://doi.org/10.1016/j.solener.2023.05.013
  23.  Häberlin, H. Photovoltaics: system design and practice. John Wiley & Sons (2012).
  24.  Zhao, Y., et al. Toward high efficiency at high temperatures: Recent progress and prospects on InGaN-based solar cells. Materials Today Energy, 31 (2023), 101229. Available: https://doi.org/10.1016/j.mtener.2022.101229
  25.  Sarollahi, M., et al., Study of simulations of double graded InGaN solar cell structures. Journal of Vacuum Science & Technology B, 40(4) (2022).042203. Available: https://doi.org/10.1116/6.0001841
  26.  Shan, H., et al. Degradation in Efficiency of InGaN/GaN Multiquantum Well Solar Cells With Rising Temperature. IEEE Transactions on Electron Devices, 69(11) (2022). 6195-6200. Available:   https://doi.org/10.1116/6.0001841 
  27.  Chen, K.-F., C.-L. Hung, and Y.-L. Tsai, Simulation study of InGaN intermediate-band solar cells. Journal of Physics D: Applied Physics. 49(48) (2016) 485102. Available: http://dx.doi.org/10.1109/TED.2017.2755069
  28.  Al-Ezzi, A. S., & Ansari, M. N. M. Photovoltaic solar cells: a review. Applied System Innovation, 5(4) (2022), 67. Available: https://doi.org/10.3390/asi5040067
  29.  Sabbah, H., Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGeI3-Based Solar Cells. Materials (Basel). 15(9) (2022) 3229. Available: https://doi.org/10.3390%2Fma15093229
  30.  Law, D.C., et al., Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems. Solar Energy Materials and Solar Cells. 94(8) (2010) 1314-1318. Available: https://doi.org/10.1016/j.solmat.2008.07.014