Investigating the Photocarrier Transmission Mechanism and the Effect of the Deposition Conditions on IBC-SHJ Solar Cell Efficiency

Document Type : Articles

Authors

1 Jundi-Shapur University of Technology, Dezful, Iran

2 Department of computer and Electrical Engineering, Jundi shapur University of Dezful, Dezful, Iran

Abstract

Abstract :




In this research, the photocarrier transmission mechanism and the effect of the deposition conditions on the IBC-SHJ cell efficiency have been studied. In this regard, short-circuit current density, open-circuit voltage, fill factor and cell efficiency values have been extracted using J–V curves for various deposition parameters. The optimization of the front SRV, the thickness and doping concentration of the c-Si substrate, the thickness and doping concentration of i-a-Si layers, the doping concentration of the emitter region, the width and the doping concentration of the n- and p-strip, the gap width between electrodes and the doping concentration of the BSF region have been carried out to achieve optimum efficiency in the IBC-SHJ solar cell. In addition, the investigation of the electric field distribution in photocarrier transmission to the interdigitated back contacts has also been comprehensively studied. The results show that the n- and p-stripe width and their doping concentration were the most influential parameters for efficiency improvement. Finally, the cell efficiency of improved IBC-SHJ structure achieved 23.52%.

Keywords


  1. N Kruse, S. Schafer, F. Haase, V. Mertens, H. Schulte-Huxel, B. Lim, B. Min, T. Dullweber, R. Peibst, R. Brendel. Simulation-based roadmap for the intergration of poly-silicon on oxide contacts into screen-printed crystalline silicon solar cells. Nature research. 11(2021) 996. Available: https://doi.org/10.1038/s41598-020-79591-6.
  2. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf. Passivating contacts for crystalline silicon solar cells. Nature Energy. 4(11) (2019) 914-928. Available: https://doi.org/10.1038/s41560-019-0463-6.
  3. Shakiba, A. Kosarian, E. Farshidi. Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J Mater Sci: Mater Electron. 28(2016) 787–797. Available: https://doi.org/10.1007/s10854-016-5591-1.
  4. Rajaee, S. Rabiee. Analysis and implementation of a new method to increase the efficiency of photovoltaic cells by applying a dual axis sun tracking system and Fresnel lens array. Optoelectronical Nanostructures. 6(3) (2021) 59-80. Available: https://doi.org/10.30495/JOPN.2021.28531.1229.
  5. Mahmoudloo. Investigation and simulation of recombination models in virtual organic solar cells. Optoelectronical Nanostructures. 7(4) (2022) 1-12. Available: https://doi.org/10.30495/jopn.2022.30243.1263.
  6. Roohollahi, M. R Shayesteh, M. Pourahmadi. Improved perovskite solar cell performance using semitransparent CNT layer. Optoelectronical Nanostructures. 8(1) (2023) 32-46. Available: https://doi.org/10.30495/JOPN.2023.29770.1253.
  7. Kosarian, M. Shakiba, E. Farshidi. Role of hydrogen treatment on microstructural and opto-electrical properties of amorphous ITO thin films deposited by reactive gas-timing DC magnetron sputtering. J Mater Sci: Mater Electron. 28(2017) 10525–10534. Available: https://doi.org/10.1007/s10854-017-6826-5.
  8. Shakiba, M. Shakiba. Role of Critical Processing Parameters on Fundamental Phenomena and Characterizations of DC Argon Glow Discharge. Optoelectronical Nanostructures. 7(2022) 67-91. Available: https://doi.org/10.30495/JOPN.2022.29878.1255.
  9. Kosarian, M. Shakiba, E. Farshidi. Role of sputtering power on the microstructural and electro-optical properties of ITO thin films deposited using DC sputtering technique. IEEJ Transaction on Electrical and Electronic Engineering. 13(2018) 27–31. Available: https://doi.org/10.1002/tee.22494.
  10. Hollemann, F. Hasse, M. Rienacker, V. Barnscheidt, J. Krugener, N. Folchert, R. Brendel, S. Ritcher, S. Grober, E. Sauter, J. Hubner, M. Oestreich, R. Peibst. Separating the two polarities of the POLO contacts of an 26.1%-efficient IBC solar cell. Natureresearch. 10(2020) 658. Available: https://doi.org/10.1038/s41598-019-57310-0.
  11. Ghavami, A. Salehi. High-efficiency CIGS solar cell by optimization of doping concentration, thickness and energy band gap. Modern Physics Letters B. 34(4) (2020) 2050053. Available: https://doi.org/10.1142/S0217984920500530.
  12. Pengcheng, Q. Pengxiang. Characteristics and development of interdigitated back contact solar cells. IOP Conf. Series: Earth and Environmental Science. 621(2021) 012067. Available: https://doi.org/10.1088/1755-1315/621/1/012067.
  13. Hosseini, M. Bahramgour, N. Delibas, A. Niaei. A simulation study around investigating the effect of polymers on the structure and performance of a perovskite solar cell. Optoelectronical Nanostructures. 7(2) (2022) 37-50. Available: https://doi.org/10.30495/JOPN.2022.29720.1252.
  14. Haschke, Y. Y Chen, R. Gogolin, M. Mews, N. Mingirulli, L. Korte, B. Rech. Approach for a simplified fabrication process for IBC-SHJ solar cells with high fill factors. Energy Procedia. 38 (2013) 732-736. Available: https://doi.org/10.1016/j.egypro.2013.07.340.
  15. Giglia, R. Varache, J. Veirman, E. Fourmond. Influence of cell edges on the performance of silicon heterojunction solar cells. Solar Energy Materials and Solar Cells. 238(2022) 111605. Available: https://doi.org/10.1016/j.solmat.2022.111605.
  16. R. M Rais, S. Sepeai, M. K. M Desa, M. A Ibrahim, P.J Ker, S. H Zaidi, K. Sopian. Photo-generation profiles in deeply-etched, two-dimensional patterns in interdigitated back contact solar cells. Journal of Ovonic Research. 17(3) (2021) 283-289. Available: https://doi.org/10.15251/jor.2021.173.283.
  17. Li, A. Liu. Carrier transmission mechanism-based analysis of front surface field effects on simplified industrially feasible interdigitated back contact solar cells. Energies. 13(2020) 5303. Available: https://doi.org/10.3390/en13205303.  
  18. D Lammert, R. J Schwartz. The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. IEEE Trans. Electron Devices. 24(1977) 337–342. Available: https://doi.org/10.1109/t-ed.1977.18738.
  19. 2D IBC-SHJ solar cell simulation and optimization. (2013). Available: https://silvaco.com.
  20. Belarbi, M. Beghdad, A. Mekemeche. Simulation and optimization of n-type interdigitated back contact silicon heterojunction (IBC-SiHJ) solar cell structure using Silvaco Tcad Atlas. Solar Energy. 127(2016) 206-215. Available: http://doi.org/10.1016/j.solener.2016.01.020.
  21. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efiiciency. Nature Energy. 2(20) (2017) 17032. Available: http://doi.org/10.1038/nenergy.2017.32.
  22. Bao, A. Liu, Y. Lin, Y. Zhou. An insight into effect of front surface field on the performance of interdigitated back contact silicon heterojunction solar cells. Materials Chemistry and Physics. 255(2020) 123625. Available: https://doi.org/10.1016/j.matchemphys.2020.123625.
  23. Lu, U. Das, S. Bowden, S. Hegedus, R. Birkmire. Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation. Institute of Energy Conversion, Univesity of Delaware, Newark, DE 19716 U.S.A, IEEE. (2009). Available: https://doi.org/10.1109/pvsc.2009.5411332.
  24. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, S. Nakano. High-efficiency a-Si/c-Si heterojunction solar cell. In: Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, Waikoloa, USA. (1994) 1219–1226. Available: https://doi.org/10.1109/wcpec.1994.519952.
  25. Jensen, R. M Hausner, R. B Bergmann, J. H Werner, U. Rau. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 10(2002) 1–13. Available: https://doi.org/10.1002/pip.398.
  26. A Green. Solar Cells: Operating principle. (1982) 2. Available: https://doi.org/10.1016/0038-092x(82)90265-1.
  27. Granek, M. Hermle, C. Reichel, A. Grohe, O. Schultz-Wittmann, S. Glunz. Positive effects of front surface field in high-efficiency back-contact back-junction n-type silicon solar cells. PVSC '08. 33rd IEEE, pp.1-5. Available: https://doi.org/10.1109/pvsc.2008.4922759.
  28. Q Zhou, F. Hu, W. J Zhou, H. Y Chen, L. Ma, C. Zhang, M. Lu. An investigating on a crystalline-silicon solar cell with black silicon layer at the rear. Nanoscale Research Letters. 12(2017) 623. Available: https://doi.org/10.1186/s11671-017-2388-y.
  29. Diouf, J. P Kleider, C. Longeaud. Two-dimensional simulations of interdigitated ack contact silicon heterojunctions solar cells. Chapter 15 of the book physics and technology of amorphous-crystalline silicon heterostructure solar cells. Springer. (2011) 483-519. Available: https://doi.org/10.1007/978-3-642-22275-7_15.
  30. Taylor, A.I Lvovsky. Fresnel Equations. Encycl. Opt. Eng., no. August, (2013) 37–41. Available: https://doi.org/10.1081/E-EOE-120047133.
  31. Granek. High-efficiency back-contact back-junction silicon solar cells. Fraunhofer institut für solare energiesysteme, Freiburg im Breisgau: Albert-Ludwigs-Universität. (2009) 209. Available: https://www.researchgate.net/publication/43033375.
  32. J McEvoy, L. Castañer, T. Markvart. Solar cells: materials, manufacture and operation. Second Edition ed.: Elsevier. (2012). Available: https://elsevier.com.
  33. D. D Smith, H. C Luan, J. Manning, T. D Dennis, A. Waldhauser, K.E Wilson, G. Harley, W. P Mulligan. Generation 3, Improved performance at lower cost. In: proceedings of 35th IEEE PV SC. (2010) 275–278. Available: https://doi.org/10.1109/pvsc.2010.5615850.