Designing an InGaP/InAlGaP Double Junction Solar Cell without an Anti-Reflection Coating by Adding a New Window Layer in the Upper Junction and Optimizing the Back Surface Field Layer

Document Type : Articles

Authors

1 Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Abstract

Abstract:
The present study proposes a novel indium gallium phosphide/aluminum gallium indium phosphide (InGaP/InAlGaP) double junction solar cell without an anti-reflection coating that includes an upper InGaP cell, a lower InAlGaP cell, and a gallium arsenide (GaAs) tunnel junction. To increase the efficiency of the cell, a new window layer was used at the upper junction. To achieve higher efficiency, the researchers also optimized the back surface field layer of the lower cell. The results were analyzed via numerical modeling with Silvaco/Atlas software under the AM1.5 radiation spectrum. Findings suggested that using the sun=1 parameter, the obtained maximum values of short-circuit current, open-circuit voltage, fill factor, and efficiency parameters for the proposed solar cell structure were Jsc = 24.078 mA/cm2, Voc = 3.41886, FF = 91.1836, and Eff = 71.721%, respectively. 

Keywords


[1] Rabbi MF, Popp J, Máté D, Kovács S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies. 15(21) (2022,Oct) 1-18. Available:https://www.mdpi.com/1996-1073/15/21/8126
[2] Kharchich FZ, Khamlichi A. Optimizing efficiency of InGaP/GaAs dual-junction solar cells with double tunnel junction and bottom back surface field layers. Optik. 272(1) (2023,Feb) 170196. Available:https://www.sciencedirect.com/science/article/abs/pii/S0030402622014541
[3] Zhang S, Sun J. Design and optimization of ARC solar cell with intrinsic layer and p–n junction in bottom cell under AM1. 5G standard spectrum. Emergent Materials. 6(1) (2023,Jan) 159-166. Available:https://link.springer.com/article/10.1007/s42247-023-00457-4
[4] Arijit.B. R, Mandla.M, Roshika.K: Performance enhancement Of GaAs and InP Based Multi-Junction Silicon Solar Cells using thickness and doping profile optimization, in Chennai, India. IEEE, (2023) 19-21. Available:https://ieeexplore.ieee.org/abstract/document/10134102
 [5] Goetzberger A, Luther J, Willeke G. Solar cells: past, present, future. Solar energy materials and solar cells.74(1) (2002,Oct) 1-11. Available:https://www.sciencedirect.com/science/article/abs/pii/S0927024802000429
[6] Bakour A, Saadoune A, Bouchama I, Dhiabi F, Boudour S, Saeed MA. Effect and optimization of ZnO layer on the performance of GaInP/GaAs tandem solar cell. Micro and Nanostructures.168(1) (2022, Aug) 207294. Available:https://www.sciencedirect.com/science/article/abs/pii/S2773012322001078
[7] Peng YS, Yao MH, Liu ZM, Tu JL, Cao QJ, Gong SF, Hu YT, Zhou SL. Numerical investigation on performance of ultra-thin GaAs solar cells enabled with frontal surface pyramid array. Journal of Physics D: Applied Physics. 24(55)  (2022, Mar) 245105. Available:https://iopscience.iop.org/article/10.1088/1361-6463/ac5da3/meta
[8] Luque A, Hegedus S, editors. Handbook of photovoltaic science and engineering. John Wiley & Sons. (2011, Mar). Available:https://kashanu.ac.ir/Files/Content/Handbook.pdf
[9] Hutchby JA, Markunas RJ, Bedair SM. Material aspects of the fabrication of multijunction solar cells. Photovoltaics.543(9) (1985, May) 40-61. Available:https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0543/0000/Material-Aspects-Of-The-Fabrication-Of-Multijunction-Solar-Cells/10.1117/12.948195.short?SSO=1
[10] De Vos A. Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics.13(5) (1980, May) 839. Available:https://iopscience.iop.org/article/10.1088/0022-3727/13/5/018/meta
[11] Lueck MR, Andre CL, Pitera AJ, Lee ML, Fitzgerald EA, Ringel SA. Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage. IEEE Electron Device Letters.27(3) (2006, Feb) 142-144. Available:https://ieeexplore.ieee.org/abstract/document/1599460/
[12] Leem JW, Lee YT, Yu JS. Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes. Optical and quantum electronics. 41(8) (2009,Jun) 605-12. Available:https://link.springer.com/article/10.1007/s11082-010-9367-1
[13] Singh KJ, Sarkar SK. Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers. Optical and Quantum Electronics.43(1) (2012, Feb) 1-21. Available:https://link.springer.com/article/10.1007/s11082-011-9499-y
[14] Nayak PP, Dutta JP, Mishra GP. Efficient InGaP/GaAs DJ solar cell with double back surface field layer. Engineering Science and Technology, an International Journal.18(3) (2015, Sep) 325-35. Available:https://www.sciencedirect.com/science/article/pii/S2215098615000245
 [15] Dutta JP, Nayak PP, Mishra GP. Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer. Optik.127(8) (2016, Apr) 4156-61. Available:https://www.sciencedirect.com/science/article/pii/S0030402616000905
[16] Arzbin H, Ghadimi A. Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells. Optik. 148(1) (2017, Nov) 358-67. Available:https://www.sciencedirect.com/science/article/pii/S0030402617310744
[17] Abbasian S, Sabbaghi-Nadooshan R. Design and evaluation of ARC less InGaP/AlGaInP DJ solar cell. Optik.136(1) (2017,May) 487-96. Available:https://www.sciencedirect.com/science/article/pii/S0030402617302279
[18] Arzbin HR, Ghadimi A. Improving the performance of a multi-junction solar cell by optimizing BSF, base and emitter layers. Materials Science and Engineering: B. 243(1) (2019, Apr) 108-14. Available:https://www.sciencedirect.com/science/article/pii/S092151071930087X
[19] Bagheri S, Talebzadeh R, Sardari B, Mehdizadeh F. Design and simulation of a high efficiency InGaP/GaAs multi junction solar cell with AlGaAs tunnel junction. Optik.199(1)  (2019, Dec) 163315. Available:https://www.sciencedirect.com/science/article/pii/S0030402619312136
[20] Chee KW, Hu Y. Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers. Superlattices and Microstructures. 119(1) (2018, Jul)  25-39. Available: https://www.sciencedirect.com/science/article/pii/S0749603617329087
 [21] Sahoo GS, Nayak PP, Mishra GP. An ARC less InGaP/GaAs DJ solar cell with hetero tunnel junction. Superlattices and Microstructures. 95(1) (2016, Jul 115-27. Available:https://www.sciencedirect.com/science/article/pii/S0749603616301975
[22] Ali K, Khan SA, MatJafri MZ. TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field. Optik. 127(19) (2016, Oct) 7492-7. Available:https://www.sciencedirect.com/science/article/pii/S0030402616304314
[23] Nayak PP, Dutta JP, Mishra GP. Performance Evaluation of InGaP/GaAs Solar Cell with Double Layer ARC. InIntelligent Computing, Communication and Devices. Springer . 308(1) (2015,Jun) 553-9. Available: https://link.springer.com/chapter/10.1007/978-81-322-2012-1_59
[24] Farhadi B, Naseri M. A novel efficient double junction InGaP/GaAs solar cell using a thin carbon nano tube layer. Optik.127(15) (2016, Aug) 6224-31.Available: https://www.sciencedirect.com/science/article/pii/S003040261630313
[25] Castaner L, Silvestre S. Modelling photovoltaic systems using PSpice. John Wiley and Sons: 2002, 21-174. Available:
[26] Routray SR, Sahoo GS, Mishra GP. Effect of intrinsic layer on the performance of InGaP/GaAs dual Junction solar cell. Michael Faraday IET International Summit, (2015,Sep).  Available:https://digital-library.theiet.org/content/conferences/10.1049/cp.2015.1655
[27] Miles RW. Photovoltaic solar cells: Choice of materials and production methods. Vacuum. 80(10) (2006, Aug) 1090-7. Available:https://www.sciencedirect.com/science/article/pii/S0042207X06000182
[28] Zhao XF, Aierken A, Heini M, Tan M, Wu YY, Lu SL, Hao RT, Mo JH, Zhuang Y, Shen XB, Xu Y. Degradation characteristics of electron and proton irradiated InGaAsP/InGaAs dual junction solar cell. Solar Energy Materials and Solar Cells.206(1) (2020, Mar) 110339. Available:https://www.sciencedirect.com/science/article/abs/pii/S0927024819306658
[29] S. M. S. Hashemi Nassab, M. Imanieh, and A. Kamaly. The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency. Journal of Optoelectronical Nanostructures. 1(1) (2016) 9-24. Available:https://jopn.marvdasht.iau.ir/article_1812.html
[30] Y. Sefidgar, H. Rasooli Saghai, and H. Ghatei Khiabani Azar. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures. 4(2) (2019) 83-102. Available: https://jopn.marvdasht.iau.ir/article_3480_0b715e5dbfb8c90033530e34eb33a84a.pdf
[31] M. Rajaee and S. Rabiee. Analysis and Implementation of a New Method to Increase the Efficiency of Photovoltaic Cells by Applying a Dual Axis Sun Tracking System and Fresnel Lens Array. Journal of Optoelectronical Nanostructures. 6(3) (2021) 59-80. Available: https://jopn.marvdasht.iau.ir/article_4981.html
[32] A. Keshavarz and Z. Abbasi. Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit. Journal of Optoelectronical Nanostructures. 1(1) (2016) 81-90. Available: https://jopn.marvdasht.iau.ir/article_1817_ 1ee4531eafbf20226b5f4158a81b8220.pdf
[33] A. Mirkamali and K. Muminov. The effect of change the thickness on CdS/CdTe tandem multi-junction solar cells efficiency. Journal of Optoelectronical Nanostructures. 2(3) (2017) 13-24. Available: https://jopn.marvdasht.iau.ir/article_2428_71d76f5443f30e4893971a3af3662275.pdf
[34] SN Jafari, A Ghadimi, S Rouhi, Strained Carbon Nanotube(SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures. 5(4) (2020) 87-110. Available: http://jopn.miau.ac.ir/article_4505_8947f89a5f380e375d5e6425249c10b5.pdf