Electronic Conductance Modulation of Armchair Graphyne Nanoribbon by Twisting Deformation

Document Type : Articles

Authors

1 Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2 Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.

3 Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

Abstract

Abstract  
The electronic and transport properties of armchair α-
graphyne nanoribbons (α-AGyNRs) are studied using 
density functional theory with non-equilibrium Green 
function formalism. The α-AGyNRs are considered with 
widths N = 6, 7 and 8 to represent three distinct families 
behavior  in presence of twisting. The band structure, 
current-voltage characteristic, transmission spectra, 
molecular energy spectrum, molecular projected self-
consistent Hamiltonian (MPSH), and transmission 
pathways are studied for α-AGyNRs with θ= 0º, 30º, 60º 
and 90º. The results indicate that 6 and 7 α-AGyNRs 
devices are semiconductor, while 8 α-AGyNR device has 
metallic character. Moreover, these behaviors are preserved 
by applying the twist. Our theoretical study shows that the 
electronic  conduction of α-AGyNRs can be tuned by 
twisted deformation. The maximum modulation of 
conductance at 1.2 V is obtained 69.94% for 7 α-AGyNR 
device from θ=0º to θ=90º. The investigation of MPSH 
demonstrates that distribution of charge density get 
localized  on twisting sites which impact on the electron 
tunneling across the scattering region.

Keywords


[1]  S. Yu, T. Teng, C. Huang, H. Hsieh  and Y. Wei, Performance Evaluation 
of Carbon-Based Nanofluids for Direct Absorption Solar Collector, 
Energies, 16 (2023, Jan.) 1-17. 
 Available: https://doi.org/10.3390/en16031157 
 
[2]   X. Shi, H. Liu, Z. Hu, J. Zhao, J. Gao,  Porous carbon-based  metal-free 
monolayers towards to high stable and flexible wearable thermoelectric and 
microelectronics, Nanoscale, 15 (2023,  Dec.) 1522-1528.  Available: 
https://doi.org/10.1039/D2NR05443D 
 
[3]   L.Yi, K. Noguchi, L.iu, A. Otsu,T. Onda, Z. Chen,  Deformation behavior 
of graphite and its effect on microstructure and thermal properties of 
aluminum/graphite composites,  Journal of Alloys and Compounds, 933 
(2023, Feb.) 167752. 
Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0925838822041433 
 
[4]    S. Zhao, X. Zhang, Y. Ni , Q. Peng , Y. Wei ,  Anisotropic mechanical 
response of a 2D covalently bound fullerene lattice,  Carbon, 202 (2023, 
Jan.) 118-124.  
[5]   S. N. Jafari, A. Ghadimi, S. Rouhi, Strained Carbon Nanotube (SCNT) Thin 
Layer Effect on GaAs Solar Cells Efficiency  , Journal of Optoelectronical 
Nanostructures , 4 (2020, Autumn) 87-110.  
https://jopn.marvdasht.iau.ir/article_4505.html 
 
[6]   H. H. Madani, M. R. Shayesteh, M. R. Moslemi,   A Carbon Nanotube 
(CNT)-based SiGe Thin Film Solar Cell Structure,  Journal of 
Optoelectronical Nanostructures,  6  (2021,Winter) 71-86. 
Available: https://jopn.marvdasht.iau.ir/article_4541.html 
 
[7]   A. K. Geim ,K. S. Novoselov, The rise of graphene, Nature  Materials , 6 
(March 2007) 183–191.  
Available: https://www.nature.com/articles/nmat1849 
 
[8]   K.S. Novoselov , A.K. Geim , S.V. Morozov2 , D. Jiang , Y. Zhang , S.V. 
Dubonos , I.V.Grigorieva , A.A. Firsov,   Electric Field Effect in Atomically 
Thin Carbon Films , science, 306 (2004, Oct.) 666-669. 
Available: https://www.science.org/doi/abs/10.1126/science.1102896 
 
[9] M.F.Craciun, S.Russo, M.Yamamoto, S.Taruchac,  Tuneable electronic 
properties in graphene, Nanotoday, 6 (2011, Feb.) 42-60. 
Available: https://doi.org/10.1016/j.nantod.2010.12.001 
 
[10]   J. Wang, F. Ma, W. Liang, M. Sun, Electrical properties and applications 
of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN 
heterostructures, Materials Today Physics, 2 (2017, Sep.) 6-34. 
Available: https://doi.org/10.1016/j.mtphys.2017.07.001 
 
[11]   M Pashangpour, V Ghaffari,  Investigation of structural and electronic 
transport properties of graphene and graphane using maximally localized 
Wannier functions, Journal of Theoretical  and Applied Physics , 7 (2013, 
Dec.), 1-8. 
Available: https://jtap.srbiau.ac.ir/article_18825.html 
 
[12]   Somayeh Fotoohi , Mohammad Kazem Moravvej-Farshi , Rahim Faez, 
Electronic and transport properties of monolayer graphene defected by one 
and two carbon ad-dimers, Appl. Phys. A, 116 (2014, Apr.) 2057–2063. 
Available: https://link.springer.com/article/10.1007/s00339-014-8400-9 .
 
[13]   F.V. Alamdarlo, G. Solookinejad, F. Zahakifar, M. R. Jalal, M. Jabbari, 
Synthesis of Graphene Oxide Functionalized with Amio Methyl Phosphonic 
Acid (AMPA) and its Structural Characterization, Journal of 
Optoelectronical Nanostructures, 6 (2021, Spring)  91-106.  
Available: https://jopn.marvdasht.iau.ir/article_4770.html 
 
[14]   M. Jabbari, M. Dehghan, M. k. moravvej farshi,G. Darvish, M. Ghaffari-
miab, Ultra-Compact Bidirectional Terahertz Switch Based on Resonance 
in Graphene Ring and Plate, Journal of Optoelectronical Nanostructures, 4 
(Autumn, 2019) 99-112.  
Available: https://jopn.marvdasht.iau.ir/article_3761.html 
 
[15]   h. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional 
Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures , 
3 (Autumn, 2018) 45-58. 
Available: https://jopn.marvdasht.iau.ir/article_3259.html 
 
[16]   R. H. Baughman, H. Eckhardt, and M. Kertesz ,  Structure property 
predictions for new planar forms of carbon: Layered phases containing sp2
 
and sp atoms, J. Chem. Phys., 87 (Dec. 1987) 6687-6699. 
Available: https://aip.scitation.org/doi/10.1063/1.453405 
 
[17]   W. Wu,   W. Guo  and   , X. C. Zeng,  Intrinsic electronic and transport 
properties of graphyne sheets and nanoribbons, Nanoscale, 5 (2013,  Jul.) 
9264-9276. 
Available: https://doi.org/10.1039/C3NR03167E 
 
[18]   S. Lakshmy, A. Kundu, N. Kalarikkal, B. Chakraborty,  Pristine and 
Transition Metal Decorated Holey  Graphyne Monolayer as an Ammonia 
sensor: Insights from DFT Simulations, J. Phys. D: Appl. Phys., 56 ( 2023, 
Jan.) 055402.  
Available: https://iopscience.iop.org/article/10.1088/1361-6463/acae2e 
 
[19]   K. Srinivasu and Swapan K. Ghosh,Graphyne and Graphdiyne: Promising 
Materials for      Nanoelectronics and Energy Storage Applications, J. Phys. 
Chem. C, 116 (2012, Jan.), 5951–5956. 
Available: https://doi.org/10.1021/jp212181h .
[20]   X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y. Kim, E.Yun, E. H. Baek, 
D. H. Ryu, H. Lee,  Constructing two-dimensional holey graphyne with 
unusual annulative π-extension, Matter , 5 (2022, Jul.), 2306-2318. 
 Available: https://doi.org/10.1016/j.matt.2022.04.033  
 
[21]   M Golzani, M Poliki, S Haji-Nasiri, γ-Graphyne rectifier and NDR tunable 
by doping, line edge roughness and twist, Computational Materials Science, 
190 (2021, Apr.)110303. 
Available:https://www.sciencedirect.com/science/article/abs/pii/S09270256
21000288 
 
[22]   J. Ren,N. Zhang,P. Liu, Li adsorption on nitrogen-substituted graphyne for 
hydrogen storage, Fullerenes, Nanotubes and Carbon Nanostructures , 29 
(2021, Oct.) 212-217.  
Available: https://doi.org/10.1080/1536383X.2020.1830066 
 
[23]   D. C. M. Rodrigues, L. L. Lage, P. Venezuela, A. Latge,   Exploring the 
enhancement of the thermoelectric properties of bilayer graphyne 
nanoribbons , Phys. Chem. Chem. Phys., 24 (2022, Apr.), 9324–9332. 
Available:https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp05491

[24]   Y. Ni,X. Wang, W. Tao,S. . Zhu , K.Yao,  The spin-dependent transport 
properties of zigzag α-graphyne nanoribbons and new device design, 
Scientific Reports, 6, (2016, May.  ) 25914. 
Available: https://www.nature.com/articles/srep25914 
 
[25]   P. Nayebi, M. Shamshirsaz,  Effect of vacancy defects on transport 
properties of α-armchair graphyne nanoribbons, The European Physical 
Journal B , 93 (2020, Sep.) 170.  
Available:https://link.springer.com/article/10.1140/epjb/e2020-10183-5 
 
 [26] J. A. Tallaa, E. A. Almahmoudb , K. Al-Khaza’leha, and H. Abu-Farsakhc, 
Structural and Electronic  Properties of Rippled Graphene with Different 
Orientations of Stone-Wales Defects: First-Principles Study  , 
Semiconductors , 55 (2022, Feb.) 643–653.  
Available: https://link.springer.com/article/10.1134/S1063782621070198 
 
[27]   A. Fasolino, J. H. Los, M. I. Katsnelson,  Intrinsic ripples in graphene, 
Nature Materials, 6 (2007, Sep.) 858–861. 
Available: https://www.nature.com/articles/nmat2011 .
[28] Y. Huang,   L. Zhang,  H. Lu,   F. Lai,   Y.Miao and  T. Liu,  A highly 
flexible and conductive graphene-wrapped carbon nanofiber membrane for 
high-performance electrocatalytic applications,  Inorg. Chem. Front., 3 
(2016,  May.) 969-976.  Available: 
https://pubs.rsc.org/en/content/articlelanding/2016/qi/c6qi00101g 
 
[29] C. Lenear, M. Becton, X. Wang, Computational analysis of hydrogenated 
graphyne folding, Chemical Physics Letters, 646 (2016, Feb.) 110-118. 
Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0009261416000385 
 
[30] M.Saiz-Bretín, F.Domínguez-Adame, A.V.Malyshev,  Twisted graphene 
nanoribbons as nonlinear nanoelectronic devices, Carbon, 149 (2019, Aug.) 
587-593. 
Available:https://www.sciencedirect.com/science/article/abs/pii/S00086223
19304038 
 
[31] S. Yue, Q. Yan, Z. Zhu, H. Cui, Q. Zheng, G. Su, First-principles study on 
electronic and magnetic properties of twisted graphene nanoribbon and 
Möbius strips, Carbon, 71 (2014, May.) 150-158. 
Available: https://doi.org/10.1016/j.carbon.2014.01.023 
 
[32] G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, and Z. Q. Fan, Altering 
regularities of electronic transport properties in twisted graphene 
Nanoribbons,  Appl. Phys. Lett., 101, (2012, Jul.) 023104. 
https://aip.scitation.org/doi/10.1063/1.4733618 
 
[33] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, Decoupling 
superconductivity and correlated insulators in twisted bilayer graphene, 
Nature Physics , 16 (2020) 926-930.  
Available: https://doi.org/10.48550/arXiv.1911.13302 
 
[34] A. Nimbalkar, H. Kim, Opportunities and Challenges in Twisted Bilayer 
Graphene: A Review, Nano-Micro Letters, 12 (2020, Jun.) 126.  
Available: https://link.springer.com/article/10.1007/s40820-020-00464-8 
 
[35] X. Wei, G. Guo, T. Ouyang, and H. Xiao, Tuning  thermal conductance in 
the twisted graphene and gamma graphyne nanoribbons, Journal of Applied 
Physics 115, (2014, Apr.) 154313. 
Available: https://aip.scitation.org/doi/10.1063/1.4872136 
 
[36]V. Do, Non-equilibrium Green function method: theory and application in 
simulation of nanometer electronic devices, Adv. Nat. Sci: Nanosci. 
Nanotechnol., 5 (2014, Jun.) 033001. 
Available: https://iopscience.iop.org/article/10.1088/2043-6262/5/3/033001 
 
[37] R. M. Dreizler and E. K. U. Gross.  Density Functional Theory  (1990, 
Springer,). 
Available: https://link.springer.com/book/10.1007/978-3-642-86105-5 
 
[38] R. G. Parr, Y. Weitao. Density-functional Theory of Atoms and Molecules 
Oxford University Press, (1994, Jan.). 
     Available:  https://academic.oup.com/book/41995 
 
[39] M. Fuchs, M. Scheffler,  Ab initio pseudopotentials for electronic structure 
calculations of poly-atomic systems using density-functional theory, 
Computer Physics Communications, 119 (1999, Jun.) 67-98. 
      Available: 
https://www.sciencedirect.com/science/article/abs/pii/S001046559800201X 
 
[40] W. Kohn, L.J. Sham.  Self-consistent equations including exchange and 
correlation effects. Phys. Rev., 140 (1965) A1133. 
Available: http://dx.doi.org/10.1103/PhysRev.140.A1133 
 
[41] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica , M. A. Ratner, 
Exploring local currents in molecular junctions, Nat. Chem., 2 (2010, Mar.) 
223-228. 
Available: https://www.nature.com/articles/nchem.546 
 
[42] Y. Tsuji, R. Movassagh, S. Datta and R. Hoffmann,  Exponential 
Attenuation of Through-Bond Transmission in a Polyene: Theory and 
Potential Realizations, ACS Nano, 9 (2015, Sep.) 11109-11120. 
      Available: https://pubs.acs.org/doi/10.1021/acsnano.5b04615 .