Document Type : Articles
Authors
Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
Abstract
Keywords
[2] G. Xing, N. Mathews, S. Sun, S. Lim, Y. Lam, M. Grätzel,S. Mhaisalkar, T. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. [Online]. 342(6156) (2013, Oct.) 344-347. Available:DOI: 10.1126/science.1243167.
[3] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. Sum, Y. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science. [Online]. 7(1) (2014) 399-407. Available:
[4] S. D. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T.Leijtens, L.Herz, A. Petrozza, H. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. [Online]. 342 (6156) (2013, Oct.) 341-344. Available:
[5] M. A. Green, A. Ho-Baillie, H. J. Snaith, The emergence of perovskite solar cells. Nature photonics. [Online]. 8(7) (2014, June.) 506-514. Available: https://doi.org/10.1038/nphoton.2014.134.
[6] SR. Hosseini, M. Bahramgour, N. Delibas, A. Niaei, A simulation study around investigating the effect of polymers on the structure and performance of a perovskite solar cell. Journal of Optoelectronical Nanostructures. [Online]. 7(2) (2022, June.) 37-50. Available: https://dx.doi.org/10.30495/jopn.2022.29720.1252
[7] S. Rafiee Rafat, Z. Ahangari, M. M. Ahadian, Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures. [Online].6(2) (2021, May.) 75-90. Available: https://dx.doi.org/10.30495/jopn.2021.28208.1224
[8] K.Pourchitsaz, MR.Shayesteh, Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET), Journal of Optoelectronical Nanostructures. [Online]. 4(1) (2019, winter.) 51-66. Available:https://dorl.net/dor/20.1001.1.24237361.2019.4.1.4.2
[9] H.hashemi madani, MR.Shayesteh, MR.Moslemi, A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures. [Online]. 6(1) (2021, winter.) 71-86. Available:https://dx.doi.org/10.30495/jopn.2021.4541
[10] S. N jafari, A.Ghadimi, s. rouhi , Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency. Journal of Optoelectronical Nanostructures. [Online]. 5(4) (2020, Autumn.) 87-110. Available:https://dorl.net/dor/20.1001.1.24237361.2020.5.4.6.7
[11] Z. Li, S. Kulkarni, P. P.Boix, E. Shi, A. Cao, K. Fu, S.K. Batabyal , J. Zhang ,Q.Xiong, L. H. Wong, N. Mathews, S. G.Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS nano. [Online]. 8(7) (2014, June.) 6797-6804. Available:https://doi.org/10.1021/nn501096h.
[12] I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky, X. Jun, B. Junseop, L.Hyuck, C.Mansoo, M.Shigeo, Y. Matsuo, High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells. Advanced Energy Materials. [Online]. 9 (27) (2019, June.) 1901204. Available: https://doi.org/10.1002/aenm.201901204.
[13] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, H. J. Snaith, Enhanced hole extraction in perovskite solar cells through carbon nanotubes. physical chemistry letters. [Online]. 5(23) (2014, Nov.) 4207-4212. Available: https://doi.org/10.1021/jz5021795.
[14] Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hu, Y. Chen, Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chemical Communications. [Online]. 52(33) (2016, Mar.) 5674-5677. Available: https://doi.org/10.1039/C6CC00268D.
[15] K. Aitola, K. Domanski,J. P. Correa‐Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E. M. J. Johansson, W. Tress, A. Hagfeldt, G. Boschloo, High temperature‐stable perovskite solar cell based on low‐cost carbon nanotube hole contact. Advanced Materials. [Online]. 29(17) (2017, Feb.) 1606398. Available: https://doi.org/10.1002/adma.201606398.
[16] Severin N. Habisreutinger and Jeffrey L. Blackburn, Carbon nanotubes in high-performanceperovskite photovoltaics and other emerging optoelectronic applications. Journal of Applied Physics. [Online]. 129, 010903 (2021, January.) Available: https://doi.org/10.1063/5.0035864.
[17] A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency. Superlattices and Microstructures. [Online]. 129 (2019, May.) 240-246. Available: https://doi.org/10.1016/j.spmi.2019.04.007.
[18] M. Hadadian , J. H. Smått, J. P. Correa-Baena, The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy & Environmental Science. [Online]. 13(5) (2020) 1377-1407. Available: DOI: 10.1039/C9EE04030G.
[19] G. Z. Xiao, Y . Tao, J. Lu, Z. Zhang, Highly transparent and conductive carbon nanotube coatings deposited on flexible polymer substrate by solution method. Presented at INEC. [Online]. (2010) 208-209. Available: https://doi.org/10.1109/INEC.2010.5424634.
[20] G. A. Buxton, N. Clarke, Computer simulation of polymer solar cells, Modelling and simulation in materials science and engineering. IOPscience. [Online]. 15(2) (2006, Dec.) 13-26. Available: https://doi.org/10.1088/0965-0393/15/2/002.
[21] A. L. Fahrenbruch, R. H. Bube, Fundamentals of solar cells (photovoltaic solar energy conversion). Solar Energy Engineering. [Online]. 106 (1984, Nov.) 497-498. Available: https://doi.org/10.1115/1.3267632.
[22] T. Goliber, J. H. Perlstein, Analysis of photogeneration in a doped polymer system in terms of a kinetic model for electric‐field‐assisted dissociation of charge‐transfer states. chemical physics. [Online]. 80(9) (1984) 4162-4167. Available: https://doi.org/10.1063/1.447244.
[23] C. L. Braun, Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. chemical physics. [Online]. 80 (9) (1984) 4157-4161. Available: https://doi.org/10.1063/1.447243.
[24] L. J. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B. [Online]. 72(8) (2005, Aug.) 085205. Available: https://doi.org/10.1103/PhysRevB.72.085205.
[25] K. J. Singh, T. J. Singh, D. Chettri, S. K. Sarkar, A thin layer of Carbon Nano Tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell. Optik. [Online]. 135(2017, April.). 256-270. Available: https://doi.org/10.1016/j.ijleo.2017.01.090.
[26] N. Zhou, A. Facchetti, Charge transport and recombination in organic solar cells (oscs), in Organic and Hybrid Solar Cells. Switzerland Springer, Cham. [Online]. (2014) 19-52. Available: https://doi.org/10.1007/978-3-319-10855-1_2.
[27] A. R. Garfrerick, Modeling heterogeneous carbon nanotube networks for photovoltaic applications using silvaco atlas software, Thesis, Naval
Postgraduate School, California. [Online]. (2012, June.) Available: https://calhoun.nps.edu/handle/10945/7345.
[28] L. J. Phillips , A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody S. Hall, K. Durose, Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process. Data in brief. [Online]. (5) (2015, Dec.) 926-928. Available: https://doi.org/10.1016/j.dib.2015.10.026
[29] M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč,. C. Ballif, M. Topič, CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Optics express. [Online]. 23(7) (2015) A263-A278. Available: https://doi.org/10.1364/OE.23.00A263.