Electrocatalytic Determination of Captopril on Gold Nanoparticle-Modified Carbon Paste Electrode.

Document Type : Articles

Authors

1 Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

2 Department of Chemistry, College of Sciences, Alzahra University, Tehran, Iran

3 Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.

4 Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

The electrochemical behavior of captopril at the surface of a carbon-paste electrode (CPE) modified with gold nanoparticles (GNPs) is described. The prepared electrode shows an excellent electrocatalytic activity toward the oxidation of captopril, which is leading to marked considerable improvement of sensitivity. Whereas at the surface of unmodified electrode an electrochemical activity for captopril cannot be observed, a very sharp anodic wave with an anodic peak potential about 1.0V (versus Ag/AgCl) is obtained using the prepared modified electrode. Captopril oxidation on CPE/GNPs proceeds at pH between 4.0 and 10.0. Under the optimized conditions, the electrocatalytic oxidation peak current of captopril showed two linear dynamic ranges with a detection limit of 8.28×10-2 µM captopril. The linear calibration range was 1.14-16.98 and 21.49-62.1 µM using amperometric. Finally, the sensor was examined as a selective, simple, and precise new electrochemical sensor for the determination of captopril in pharmaceutical samples including tablets and satisfactory results were obtained.

Keywords


[1]  M.M. Tuckerman, Analytical profiles of drug substances, Vol. 11. Edited 
by Klaus Florey, Academic Press, 111 Fifth Avenue, New York, NY 
10003. 1982. 665 pp. 15 × 23 cm. Price $39.00, J. Pharm. Sci. 72 (1983) 
582. doi:10.1002/jps.2600720535. 
[2]  A.O. Nur, J.S. Zhang, Recent progress in sustained/controlled oral 
delivery of captopril: an overview,  Int. J. Pharm.  194 (2000) 139–146. 
doi:https://doi.org/10.1016/S0378-5173(99)00362-2. 
[3]  M. Guivernau, F. Armijo, R. Rosas, Role of sulfhydryl groups in the 
stimulatory effect of captopril on vascular prostacyclin synthesis., Eur. J. 
Pharmacol. 198 (1991) 1–6. doi:10.1016/0014-2999(91)90554-4. 
[4]  N. Aykin, R. Neal, M. Yusof, N. Ercal, Determination of captopril in 
biological samples by high-performance liquid chromatography with 
ThioGloTM3 derivatization, Biomed.  Chromatogr. 15 (2001) 427–432. 
doi:10.1002/bmc.95. 
[5]  A.M. Pimenta, A.N. Araújo, M.C.B.S.M. Montenegro, Sequential 
injection analysis of captopril based on colorimetric and potentiometric 
detection,  Anal. Chim. Acta. 438 (2001) 31–38. 
doi:https://doi.org/10.1016/S0003-2670(00)01307-6. 
[6]  T. Mirza, H.S.I. Tan, Determination of captopril in pharmaceutical tablets 
by anion-exchange HPLC using indirect photometric detection; a study in 
systematic method development, J. Pharm. Biomed. Anal. 25 (2001) 39–
52. doi:https://doi.org/10.1016/S0731-7085(00)00462-3. 
[7]  A.M. El-Brashy, Titrimetric determination of captopril in dosage forms., 
Acta Pharm. Hung. 65 (1995) 91–93. 
https://europepmc.org/article/med/7572189. 
[8]  P. Pourhakkak, M.A. Karimi, H. Tavallali, P. Pourhakkak, M. Mazloum 
Ardakani, A New Potentiometric Sensor for Rapid Determination of 
Captopril in Pharmaceutical Formulation and Biological Samples, Iran. J. 
Anal. Chem. (2022). https://doi.org/10.30473/ijac.2022.63786.1234. 
[9]  P.T. Lee, R.G. Compton, Precursor modified electrodes: electrochemical 
detection of captopril,  Electroanalysis. 27 (2015) 2286–2294. 
https://doi.org/10.1002/elan.201500093. 
[10]  R.A. Soomro, M.M. Tunesi, S. Karakus, N. Kalwar, Highly sensitive 
electrochemical determination of captopril using CuO modified ITO  
electrode: the effect of in situ grown nanostructures over signal 
sensitivity, RSC Adv. 7 (2017) 19353–19362. DOI: 10.1039/C7RA01538K 
[11]  A. Ghosh, A.B. Pawar, T. Chirmade, S.M. Jathar, R. Bhambure, D. 
Sengupta, A.P. Giri, M.J. Kulkarni, Investigation of the Captopril–Insulin 
Interaction by Mass Spectrometry and Computational Approaches 
Reveals that Captopril Induces Structural Changes in Insulin,  ACS 
Omega. 7 (2022)  23115–23126.  https://doi.org/10.1021 
/acsomega.2c00660 
[12]  Z.S. Li, H.N. Qian, T.Y. Fan, Preparation and in vitro evaluation of fused 
deposition modeling 3D printed compound tablets of captopril and 
hydrochlorothiazide, Beijing Da Xue Xue Bao. Yi Xue Ban=  J. Peking 
Univ. Heal. Sci. 54 (2022) 572–577. https://doi.org/10.19723/j.issn.1671-
167x.2021.02.020. 
[13]  S.B. Simanjuntak, M.J. Kalalo, T. Hebber, T.E. Tallei, Fatimawali, 
Angiotensin converting enzyme inhibitors from Abelmoschus manihot 
(L.) Medik leaves: A molecular docking study, in: AIP Conf. Proc., AIP 
Publishing LLC, 2022: p. 70002. https://doi.org/10.1063/5.0104277. 
[14]  J.A. Badejo, O.S. Michael, M.O. Adetona, O. Abdulmalik, E. Agbebi, 
E.O. Iwalewa, O.S. Fagbemi, Mechanisms of anti-hypertensive activity of 
methanol leaf extract and fractions of Persea americana Mill.(Lauraceae) 
in rats, Niger.  J. Pharm. Res. 18 (2022) 63–74. 
https://www.ajol.info/index.php/njpr/article/view/228604 
[15]  I. Giangrieco, M. Tamburrini, L. Tuppo, M.S. Pasquariello, M.A. 
Ciardiello, Healthy biological activities in legume flours from industrial 
cooking,  Food Biosci. 48 (2022) 101743. 
https://doi.org/10.1016/j.fbio.2022.101743 
[16]  L.B. Kuntze, R.C. Antonio, T.C. Izidoro‐Toledo, C.A. Meschiari, J.E. 
Tanus‐Santos, R.F. Gerlach, Captopril and Lisinopril Only Inhibit Matrix 
Metalloproteinase‐2 (MMP‐2) Activity at Millimolar Concentrations, 
Basic Clin. Pharmacol. Toxicol. 114 (2014) 233–239.  https://doi.org/ 
10.1111/bcpt.12151. 
[17]  A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive study on 
the electrochemical advanced oxidation of antihypertensive captopril in 
different cells and aqueous matrices, Appl. Catal. B Environ. 277 (2020) 
119240. https://doi.org/10.1016/j.apcatb.2020.119240. 
[18]  M. Skowron, W. Ciesielski, Spectrophotometric determination of methimazole, D-penicillamine, captopril, and disulfiram in pure form and 
drug formulations,  J. Anal. Chem. 66 (2011) 714–719.  https://link. 
springer.com/article/10.1134/S1061934811080132. 
[19]  B. Li, Z. Zhang, M. Wu, Flow-injection chemiluminescence 
determination of captopril using on-line electrogenerated silver (II) as the 
oxidant, Microchem. J. 70 (2001) 85–91.  https://doi.org/10.1016/S0026-
265X(01)00090-X. 
[20]  M. Ghazi-Khansari, A. Mohammadi-Bardbori, Captopril  ameliorates 
toxicity induced by paraquat in mitochondria isolated from the rat liver, 
Toxicol. Vitr. 21 (2007) 403–407.  https://doi.org/10.1016/j.tiv.2006.10. 
001. 
[21]  A.A. Ensafi, H. Karimi-Maleh, M. Ghiaci, M. Arshadi, Characterization 
of Mn-nanoparticles decorated organo-functionalized SiO2–Al2O3 
mixed-oxide as a novel electrochemical sensor: application for the 
voltammetric determination of captopril,  J. Mater. Chem. 21 (2011) 
15022–15030. doi:10.1039/C1JM11909E. 
[22]  M. Safaei, H. Beitollahi, M.R. Shishehbore, S. Tajik, R. hosseinzadeh, 
Electrocatalytic determination of captopril using a carbon paste electrode 
modified with N-(ferrocenyl-methylidene)fluorene-2-amine and 
graphene/ZnO nanocomposite,  J. Serbian Chem. Soc. Vol 84, No 2 
(2019)DO   -  10.2298/JSC180414095S . (2019).  https://shd-pub.org.rs/ 
index.php/JSCS/article/view/6772. 
[23]  M.B. Gholivand, M. Khodadadian, Simultaneous Voltammetric 
Determination of Captopril and Hydrochlorothiazide on a 
Graphene/Ferrocene Composite Carbon Paste Electrode, Electroanalysis. 
25 (2013) 1263–1270. doi:10.1002/elan.201200665. 
[24]  H. Bagheri, H. Karimi-Maleh, F. Karimi, S. Mallakpour, M. Keyvanfard, 
Square wave voltammetric determination of captopril in liquid phase 
using N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified ZnO/CNT 
carbon paste electrode as a novel electrochemical sensor, J. Mol. Liq. 198 
(2014) 193–199. doi:https://doi.org/10.1016/j.molliq.2014.06.027. 
[25]  W. Zheng, Y.F. Zheng, K.W. Jin, N. Wang, Direct electrochemistry and 
electrocatalysis of hemoglobin immobilized in TiO2 nanotube films, 
Talanta. 74 (2008) 1414–1419. doi:https://doi.org/10.1016/j.talanta.2007 
.09.017. 
[26]  H. Beitollahi, S. Ghofrani Ivari, R. Alizadeh, R. Hosseinzadeh, Preparation, Characterization and Electrochemical Application of ZnO-
CuO Nanoplates for Voltammetric Determination of Captopril and 
Tryptophan Using Modified Carbon Paste Electrode, Electroanalysis. 27 
(2015) 1742–1749. doi:10.1002/elan.201500016. 
[27]  H. Beitollahi, M.A. Taher, M. Ahmadipour, R. Hosseinzadeh, 
Electrocatalytic determination of captopril using a modified carbon 
nanotube paste electrode: Application to determination of captopril in 
pharmaceutical and biological samples,  Measurement. 47 (2014) 770–
776. doi:https://doi.org/10.1016/j.measurement.2013.10.001. 
[28]  B. Rezaei, S. Damiri, Voltammetric behavior of multi-walled carbon 
nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system 
as a sensor for determination of captopril, Sensors Actuators B Chem. 134 
(2008) 324–331. https://doi.org/10.1016/j.snb.2008.05.004. 
[29]  A.A. Ensafi, M. Monsef, B. Rezaei, H. Karimi-Maleh, Electrocatalytic 
oxidation of captopril on a vinylferrocene modified carbon nanotubes 
paste electrode, Anal. Methods. 4 (2012) 1332–1338. https://pubs.rsc.org 
/en/content/articlelanding/2012/ay/c2ay05815d/unauth. 
[30]  H. Bahramipur, F. Jalali, Voltammetric determination of captopril using 
chlorpromazine as a homogeneous mediator,  Int. J. Electrochem. 2011 
(2011). https://doi.org/10.4061/2011/864358. 
[31]  H. Karimi-Maleh, A.A.  Ensafi, A.R. Allafchian, Fast and sensitive 
determination of captopril by voltammetric method using 
ferrocenedicarboxylic acid modified carbon paste electrode, J. Solid State 
Electrochem. 14 (2010) 9.  https://link.springer.com/article/10.1007/ 
s10008-008-0781-2. 
[32]  H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, A novel 
voltammetric sensor employing zinc oxide nanoparticles and a new 
ferrocene-derivative modified carbon paste electrode for determination of 
captopril in drug samples, Anal. Methods. 8 (2016) 1780–1788. https:// 
doi.org/10.1039/C5AY03284A. 
[33]  R.-I. Stefan, J.K.F. van Staden, H.Y. Aboul-Enein, Amperometric 
biosensors/sequential injection analysis system for simultaneous 
determination of S-and R-captopril, Biosens. Bioelectron. 15 (2000) 1–5. 
https://doi.org/10.1016/S0956-5663(99)00075-5.