Investigating the Design and Simulation of a Tunable Optical Filter Based on Photonic Crystal Using Selective Optofluidic Infiltration

Document Type : Articles

Authors

Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Abstract
In this paper an optical filter based on 2D hexagonal photonic crystals that is suitable for the third window of optical communications is proposed. The structure consists of two waveguides including one L4 resonant cavity created by removing 4 holes between them, and one L1 resonant cavity by removing 1 hole near the output waveguide; moreover, 8 holes around the L4 cavity had been selected for optofluidic infiltration within them. This structure is very flexible, and different wavelengths in the third telecommunication window can be chosen using selective optofluidic infiltration with different refractive indices. Simplicity in design, no need to change the size of the holes and separating the desired wavelengths by selecting different optofluidic infiltration materials are the main features of this study. The plane-wave expansion method (PWE) and the finite-difference time-domain method (FDTD) have been used to extract the photonic bandgap and study the behavior of the photonic structure, respectively.

Keywords


[1]  H. Alipour banaei, F. Mehdizadeh, B. Amini.,  All optical communication 
filter based on photonic crystal structure, IJFCC, 4(4) (October. 2015) 346–
349. https://doi.org/10.18178/IJFCC.2015.4.5.414.
[2] M. Seifouri, V. Fallahi, S. Olyaee,  Ultra  high-Q optical filter based on 
photonic crystal ring resonator, Photonic Netw Commun, 35(2) (September. 
2018) 225–230. https://doi.org/10.1007/s11107-017-0732-x  
[3]  K. Zarei,  Investigating the Properties of an  optical waveguide based  on 
photonic crystal  with  point defect  and  lattice constant perturbation, J. 
Optoelectronical  Nanostructures. 1(1)  (Spring.  2016) 1–5. 
https://dorl.net/dor/20.1001.1.24237361.2016.1.1.6.3 
[4]  S. Rezaee, M. Zavvari, H. Alipourbanaei, A novel optical filter based on H-
shaped photonic crystal ring resonator,  Optik, 126(20) (October.  2015) 
2535–2538. https://doi.org/10.1016/j.ijleo.2015.06.043 
[5]  S. Naghizade, S.M. Sattari-esfahlan, Excellent quality factor ultra-compact 
optical communication filter on ring-shaped cavity, J. Opt. Commun, 40(1) 
(May. 2017) 1–5. https://doi.org/10.1515/joc-2017-0035 
[6]  F. Mehdizadeh, H.  Alipour-banaei,  All optical 1 to 2 decoder based on 
photonic crystal ring resonator, J.  Optoelectronical  Nanostructures. 2(2) 
(Spring.2017) 1–10. https://dorl.net/dor/20.1001.1.24237361.2017.2.2.1.7 
[7]  B. Elyasi, S. Javahernia,  All  optical digital multiplexer using nonlinear 
photonic crystal ring resonators, J.  Optoelectronical  Nanostructures. 7(1) 
(Winter.  2022) 97–106. 
https://dorl.net/dor/10.30495/JOPN.2022.29174.1242 
[8]  V. Fallahi, M. Seifouri, Novel  four-channel all optical demultiplexer based 
on  square  PCRR for  using  WDM  applications, J.  Optoelectronical 
Nanostructures. 3(4) (Autumn. 2018). 
https://dorl.net/dor/20.1001.1.24237361.2018.3.4.5.2 
[9]  K. Venkatachalam, D.S. Kumar, S. Robinson., Investigation on 2D photonic 
crystal based eight-channel wavelength-division demultiplexer, Photonic 
Netw Commun,  34(1)  (November.  2016)  100–110. 
https://doi.org/10.1007/s11107-016-0675-7  
[10] Z. Rashki, Novel design  for photonic crystal ring resonators based optical 
channel drop filter, J.  Optoelectronical  Nanostructures. 3(3) (Summer. 
2018) 59– 78. https://dorl.net/dor/20.1001.1.24237361.2018.3.3.6.1 
[11] A. Vaisi, M. Soroosh, A. Mahmoudi,  Low loss and high-quality factor 
optical filter using photonic crystal-  based resonant cavity, J. Opt.  
Commun, 39(3) (June.  2018)  285–288.  https://doi.org/10.1515/joc-2016-
0135.
[12]   S.G. Johnson, JD. Joannopoulos,  Block-iterative frequency-domain 
methods for Maxwell's equations in a plane wave basis, Opt. Express, 8(3) 
(January. 2001) 173–190. https://doi.org/10.1364/OE.8.000173 
[13] K. Venkatachalam D. Sriram Kumar S. Robinson, Performance analysis of
2D-Photonic Crystal based Eight Channel Wavelength Division 
Demultiplexer, Optik (127)(20) (October. 2016) 8819-8826.
https://doi.org/10.1016/j.ijleo.2016.06.112 
[14] RSoft software, available at: www.synopsys.com/photonic-solutions/ rsoft-
photonic-device-tools/rsoft-products.html, (accessed 1 June 2022). 
[15] E. John, S. Aunders, C. Sanders, H. P. Loock Refractive indices of common 
solvents and solutions at 1550nm, applied optics, 55(4) (February.  2016) 
947–953. https://doi.org/10.1364/AO.55.000947 
[16] S. Robinson, R. Nakkeeran,  Two-dimensional photonic crystal ring 
resonator based add drop filter for CWDM systems, Opt Int J Light 
Electron, 124(18) (September.  2013)  3430-3435. 
https://doi.org/10.1016/j.ijleo.2012.10.038 
[17] F. Mehdizadeh, H. Alipour-Banaei, S. Serajmohammadi,  Channel-drop 
filter based on a photonic crystal ring resonator, J. Opt, 15(7) (May. 2013)
1-7. https://doi.org/10.1088/2040-8978/15/7/075401 
[18] M. Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-
dimensional square array photonic crystals based on index contrast 
tailoring,  Opt Eng, 54(3) (March.  2015)  037111(1-7). 
https://doi.org/10.1117/1.oe.54.3.037111 
[19] H. Alipour-Banaei, M.Jahanara, F. Mehdizadeh,  T-shaped channel drop 
filter based on photonic crystal ring resonator,  Optik , 125(18)
(September. 2014) 5348-5351. https://doi.org/10.1016/j.ijleo.2014.06.056 
[20] S. Robinson, R. Nakkeeran,  Coupled mode theory analysis for circular 
photonic crystal ring resonator-based add-drop  filter, Opt. Eng, 51(11)
(November. 2012) 114001(1-6). https://doi.org/10.1117/1.oe.51.11.114001 
[21] VR. Balaji, M. Murgan, S.Robinson, Optimization of DWDM demultiplexer 
using regression analysis, J Adv Engg Tech, 2016  (May.  2016)  1-10.
https://doi.org/10.1155/2016/9850457.