Assessment of Mixed Tin-Lead Perovskite as the Absorber Material for Fabrication of Highly Sensitive Broadband Photodetector

Document Type : Articles

Authors

1 Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

2 Faculty Of Advanced Technologies, Shiraz University, Shiraz, Iran

Abstract

The relatively large bandgaps of the methylammonium lead halide perovskites are the major obstacle to achieving broadband response in the lead-based perovskite photodetectors. Partial or total substitution of lead with tin leads to smaller bandgaps for perovskite materials. Here, we investigated the application of a mixed tin-lead perovskite material, (FASnI3)0.6(MAPbI3)0.4, with small bandgap of 1.24 eV as the absorber material in a perovskite photodetector. The device simulation is performed by using SCAPS simulation software. The effect of different parameters such as absorber layer quality and thickness, interface defects, doping concentration and carrier mobility on the performance of the device is studied. The simulation results clarify that the parameters optimization can result in achieving a self-powered photodetector with broad spectral response from 300 to 1050 nm wavelength, a high responsivity of 0.6 A W-1 at 930 nm, almost flat detectivity of over 1013 Jones and a wide linear dynamic range. We believe this study can provide theoretical guidance for the design of highly sensitive, broadband, mixed tin-lead perovskite photodetectors.

Keywords


[1] L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Solution-
processed hybrid perovskite photodetectors with high detectivity, Nat. 
Commun. 5 (2014) 1–6. doi:10.1038/ncomms6404. 
[2] H.R.S. Saman Salimpour,  Impressive Reduction of Dark Current in InSb 
Infrared Photodetector to achieve High Temperature Performance, J. 
Optoelectron. Nanostructures. 3 (2018) 81–96. 
doi:20.1001.1.24237361.2018.3.4.7.4. 
[3] H.G.-B.-O. Somaye Jalaei, Javad Karamdel, Black Phosphorus Mid-Infrared 
Photodetector with Circular Au/Pd Antennas, J. Optoelectron. 
Nanostructures. 7 (2022) 37–54. doi:10.30495/JOPN.2022.29104.1239. 
[4] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang, Trap Assisted Bulk 
Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast 
Response by Ag Hyperdoping, Adv. Opt. Mater. 6 (2018) 1–8. 
doi:10.1002/adom.201700638. 
[5]  I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan,  Band parameters for III-V 
compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815–
5875. doi:10.1063/1.1368156. 
 
[6] C. Liu, K. Wang, C. Yi, X. Shi, P. Du, A.W. Smith, A. Karim, X. Gong, 
Ultrasensitive solution-processed perovskite hybrid photodetectors, J. Mater. 
Chem. C. 3 (2015) 6600–6606. doi:10.1039/c5tc00673b. 
[7] K. Wang, C. Liu, C. Yi, L. Chen, J. Zhu, R.A. Weiss, X. Gong,  Efficient 
Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering, Adv. 
Funct. Mater. 25 (2015) 6875–6884. doi:10.1002/adfm.201503160. 
[8] H.-S. Rao, W.-G. Li, B.-X. Chen, D.-B. Kuang, C.-Y. Su, In Situ Growth of 
120 cm2
  CH3NH3PbBr3  Perovskite Crystal Film on FTO Glass for 
Narrowband-Photodetectors, Adv. Mater. 29 (2017) 1602639. 
doi:10.1002/adma.201602639. 
[9] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient 
Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide 
Perovskites, Science. 338 (2012) 643–647. doi:10.1126/science.1228604. 
[10] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang,  Highly narrowband 
perovskite single-crystal photodetectors enabled by surface-charge 
recombination, Nat. Photonics. 9 (2015) 679–686. 
doi:10.1038/nphoton.2015.156. 
[11] R. Liu, J. Zhang, H. Zhou, Z. Song, Z. Song, C.R. Grice, D. Wu, L. Shen, H. 
Wang, Solution-Processed High-Quality Cesium Lead Bromine Perovskite 
Photodetectors with High Detectivity for Application in Visible Light 
Communication, Adv. Opt. Mater. 8 (2020) 1–7. 
doi:10.1002/adom.201901735. 
[12] H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang, 
Y. Yan,  Self-powered CsPbBr3  nanowire photodetector with a vertical 
structure, Nano Energy. 53 (2018) 880–886. 
doi:10.1016/j.nanoen.2018.09.040. 
[13] M.M.A. Shahram Rafiee Rafat, Zahra Ahangari, Performance Investigation 
of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods 
as Electron Transport Layers, J. Optoelectron. Nanostructures. 6 (2021) 75–
90. doi: 10.30495/JOPN.2021.28208.1224. 
[14] A.N. Seyyed Reza Hosseini, Mahsa Bahramgour, Nagihan Delibas,  A 
Simulation Study around Investigating the Effect of Polymers on the 
Structure  and Performance of a Perovskite Solar Celle, J. Optoelectron. 
Nanostructures. 7 (2022) 37–50. doi:10.30495/JOPN.2022.29720.1252. 
[15] A.K.S. Davood Jalalian, Abbas Ghadimi, Investigation of the Effect of Band 
Offset and Mobility of Organic/Inorganic HTM Layers on the Performance  
of Perovskite Solar Cells, J. Optoelectron. Nanostructures. 5 (2020) 65–78. 
doi: 20.1001.1.24237361.2020.5.2.6.3. 
[16] D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu, X. Pan, H. Wan, J. Zhang, H. 
Wang, X. Li, H. Zeng, Welding Perovskite Nanowires for Stable, Sensitive, 
Flexible Photodetectors, ACS Nano. 14 (2020) 2777–2787. 
doi:10.1021/acsnano.9b09315. 
[17] Z. Cheng, K. Liu, J. Yang, X. Chen, X. Xie, B. Li, Z. Zhang, L. Liu, C. Shan, 
D. Shen, High-Performance Planar-Type Ultraviolet Photodetector Based 
on High-Quality CH3NH3PbCl3  Perovskite Single Crystals, ACS Appl. 
Mater. Interfaces. 11 (2019) 34144–34150. doi:10.1021/acsami.9b09035. 
[18] Y. Fang, J. Huang,  Resolving weak light of sub-picowatt per square 
centimeter by hybrid perovskite photodetectors enabled by noise reduction, 
Adv. Mater. 27 (2015) 2804–2810. doi:10.1002/adma.201500099. 
[19] W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.T. 
Lee, J. Jie,  Aligned Single-Crystalline Perovskite Microwire Arrays for 
High-Performance Flexible Image Sensors with Long-Term Stability, Adv. 
Mater. 28 (2016) 2201–2208. doi:10.1002/adma.201505126. 
[20] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, T. Wu,  Ambipolar 
solution-processed hybrid perovskite phototransistors, Nat. Commun. 6 
(2015) 1–8. doi:10.1038/ncomms9238. 
[21] C. Liu, K. Wang, P. Du, E. Wang, X. Gong, A.J. Heeger,  Ultrasensitive 
solution-processed broad-band photodetectors using CH3NH3PbI3 
perovskite hybrids and PbS quantum dots as light harvesters, Nanoscale. 7 
(2015) 16460–16469. doi:10.1039/c5nr04575d. 
[22] Y. Wang, D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad, S.M. Alshehri, 
Perovskite/Polymer Hybrid Thin Films for High External Quantum 
Efficiency Photodetectors with Wide Spectral Response from Visible to Near-
Infrared Wavelengths, Adv. Opt. Mater. 5 (2017) 1–6. 
doi:10.1002/adom.201700213. 
[23] Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and Stable Tin–Lead 
Hybrid Perovskite Photodetectors Enabled by Double‐Sided Surface 
Passivation for Infrared Upconversion Detection, Small. 16 (2020) 2001534. 
doi:10.1002/smll.202001534. 
[24] J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism 
between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band 
Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3, J. Phys. Chem. Lett. 6 (2015) 3503–3509. doi:10.1021/acs.jpclett.5b01738. 
[25] T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, 
R. Hashimoto, R. Murdey, T. Sasamori, H. Do Kim, H. Ohkita, T. Handa, Y. 
Kanemitsu, A. Wakamiya, Sn(IV)-free tin perovskite films realized by in situ 
Sn(0) nanoparticle treatment of the precursor solution, Nat. Commun. 11 
(2020) 3008. doi:10.1038/s41467-020-16726-3. 
[26] B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie, 
A.J. Pearson, Y. Puttisong, K.C. Gödel, H.E. Beere, D.A. Ritchie, A.D. 
Mohite, S.E. Dutton, R.H. Friend, A. Sadhanala, High Open-Circuit Voltages 
in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction 
Photovoltaics, Adv. Mater. 29 (2017) 1604744. 
doi:10.1002/adma.201604744. 
[27] Z. Yang, A. Rajagopal, C.C. Chueh, S.B. Jo, B. Liu, T. Zhao, A.K.Y. Jen, 
Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells, 
Adv. Mater. 28 (2016) 8990–8997. doi:10.1002/adma.201602696. 
[28] S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok, 
Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells 
through SnF2-Pyrazine Complex, J. Am. Chem. Soc. 138 (2016) 3974–3977. 
doi:10.1021/jacs.6b00142. 
[29] X. Xu, C.C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L.Y. Lin, A.K.Y. Jen, 
High-Performance Near-IR Photodetector Using Low-Bandgap 
MA0.5FA0.5Pb0.5Sn0.5I3  Perovskite, Adv. Funct. Mater. 27 (2017) 1–6. 
doi:10.1002/adfm.201701053. 
[30] W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. 
Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly Sensitive 
Low‐Bandgap Perovskite Photodetectors with Response from Ultraviolet to 
the Near‐Infrared Region, Adv. Funct. Mater. 27 (2017) 1703953. 
doi:10.1002/adfm.201703953. 
[31] M. Burgelman, P. Nollet, S. Degrave,  Modelling polycrystalline 
semiconductor solar cells, Thin Solid Films. 361 (2000) 527–532. 
doi:10.1016/S0040-6090(99)00825-1. 
[32] C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M.M. Junda, C. 
Wang, C. Jiang, M. Al‐Jassim, R.J. Ellingson, N.J. Podraza, K. Zhu, Y. Yan, 
Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐
Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells, Adv. Energy 
Mater. 9 (2019) 1803135. doi:10.1002/aenm.201803135. 
[33] B. Subedi, C. Li, M.M. Junda, Z. Song, Y. Yan, N.J. Podraza,  Effects of 
intrinsic and atmospherically induced defects in narrow bandgap 
(FASnI3)x(MAPbI3)1−x perovskite films and solar cells, J. Chem. Phys. 152 
(2020) 064705. doi:10.1063/1.5126867. 
[34] W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry,  Possible efficiency 
boosting of non-fullerene acceptor solar cell using device simulation, Opt. 
Mater. (Amst). 91 (2019) 239–245. doi:10.1016/j.optmat.2019.03.023. 
[35] G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li, 
Y. Li,  Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor 
Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells 
with Low Energy Loss, Adv. Funct. Mater. 28 (2018) 1–8. 
doi:10.1002/adfm.201804427. 
[36] G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey, M.A. Kamarudin, D. 
Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T.N. Murakami, 
H. Segawa, S. Hayase, Strain Relaxation and Light Management in Tin-Lead 
Perovskite Solar Cells to Achieve High Efficiencies, ACS Energy Lett. 4 
(2019) 1991–1998. doi:10.1021/acsenergylett.9b01237. 
[37] G. Kapil, T.S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J. 
Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T.N. Murakami, 
H. Segawa, S. Hayase, Highly Efficient 17.6% Tin-Lead Mixed Perovskite 
Solar Cells Realized through Spike Structure, Nano Lett. 18 (2018) 3600–
3607. doi:10.1021/acs.nanolett.8b00701. 
[38] M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann, S. 
Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, L. Kegelmann, F. 
Zu, S. Albrecht, N. Koch, T. Kirchartz, M. Saliba, T. Unold, D. Neher, The 
impact of energy alignment and interfacial recombination on the internal 
and external open-circuit voltage of perovskite solar cells, Energy Environ. 
Sci. 12 (2019) 2778–2788. doi:10.1039/c9ee02020a. 
[39] Y. Raoui, H. Ez-Zahraouy, S. Kazim, S. Ahmad, Energy level engineering 
of charge selective contact and halide perovskite by modulating band offset: 
Mechanistic insights, J. Energy Chem. 54 (2021) 822–829. 
doi:10.1016/j.jechem.2020.06.030. 
[40] N. Lakhdar, A. Hima, Electron transport material effect on performance of 
perovskite solar cells based on CH3NH3GeI3, Opt. Mater. 99 (2020) 109517. 
doi:10.1016/j.optmat.2019.109517. 
[41] Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang,  Resolving spatial and energetic 
distributions of trap states in metal halide perovskite solar cells, Science. 
367 (2020) 1352–1358. doi:10.1126/science.aba0893. 
[42] M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin, 
K. Techato, N. Nuthammachot, T. Chowdhury, M. Suklueng, Effect of deep-
level defect density of the absorber layer and n/i interface in perovskite solar 
cells by SCAPS-1D, Results Phys. 16 (2020) 102839. 
doi:10.1016/j.rinp.2019.102839. 
[43] T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W.E.I. Sha, H. Zhu, Y. 
(Michael) Yang, Realizing High Efficiency over 20% of Low‐Bandgap Pb–
Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn4+, Sol. RRL. 4 
(2020) 1900467. doi:10.1002/solr.201900467. 
[44] K. Frohna, S.D. Stranks,  Hybrid perovskites for device applications, in: 
Handb. Org. Mater. Electron. Photonic Devices, Elsevier, 2019: pp. 211–
256. doi:10.1016/B978-0-08-102284-9.00007-3. 
[45] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. 
Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith,  Electron-Hole Diffusion 
Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite 
Absorber, Science. 342 (2013) 341–344. doi:10.1126/science.1243982. 
[46] T.S. Ripolles, D. Yamasuso, Y. Zhang, M.A. Kamarudin, C. Ding, D. 
Hirotani, Q. Shen, S. Hayase,  New Tin(II) Fluoride Derivative as a 
Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead 
Perovskite Solar Cells, J. Phys. Chem. C. 122 (2018) 27284–27291. 
doi:10.1021/acs.jpcc.8b09609. 
[47] C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, 
W. Huang,  Highly Sensitive, Fast Response Perovskite Photodetectors 
Demonstrated in Weak Light Detection Circuit and Visible Light 
Communication System, Small. 15 (2019) 1903599. 
doi:10.1002/smll.201903599.