Structural, Morphological and Optical Analysis of TiO2 Thin Films Prepared by RF Magnetron Sputtering

Document Type : Articles

Authors

1 Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

2 Department of physics, Nanotechnology Research Center, Marvdasht Branch, Islamic Azad University, marvdasht, Iran

3 Department of physics, Marvdasht Branch, Islamic Azad University, marvdasht, Iran

Abstract

Thin layer of titanium dioxide has been deposited on a glass sheet using RF magnetron sputtering under different preparation conditions. Phase, lattice parameters, optical features and morphology were investigated under different laboratory conditions in different thicknesses by using XRD, spectrophotometry and atomic force microscopic (AFM), within the visible spectrum range. Also, the lattice structure, in most cases, is tetragonal or a combination of tetragonal and orthorhombic. The band gap energy for each layer was measured using Tauc’s Plot. It was observed that the edge of absorption is reduced following an increase in thickness except for a thickness of 75 nm. By increasing the pressure, the band gap energy of the layers or the edge of absorption increases except for 0.04 mbar. By increasing the power, the band gap energy of the layers will change resulting in an increasing-decreasing trend in the edge of absorption, which can be the outcome of changes in the lattice formation. Nevertheless, it is obvious that the band gap energy, phase, lattice parameter and morphology is totally dependent on the laboratory conditions of making layers.

Keywords


[1] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4) (2005) 35-44. Available: https://doi.org/10.1088/0268-1242/20/4/004.
[2] J.F. Wager, D.A. Kheszler, R.E. Persley, Transparent Electronics. Springer, (2008).
[3] D.K. Aswal, S.K. Gupta, Science and Technology of Chemi resister Gas Sensors. Nova Science Pub, (2007).
[4] J.F. Banifield, D.R. velben, D.J. Smith, The identification of naturally occurring TiO2 by structure determination using high-resolution electron microscopy,image simulation,and distance-least-squers refinement. American. Mineralogist. 76(3-4) (1991) 343-353. Available: https://pubs.geoscienceworld.org/msa/ammin/article-abstract/76/3-4/343/42515/The-identification-of-naturally-occurring-TiO2-B.
V.A. Schwarz, S.D. Klein, R.H. Hornung, R. Knochenmuss, P. Wyss, D. Fink, U. Haler, H. Walt, Laser in Surgery and Medicine. Wiley, (2001) 252-256.
[6] C.M. Lampert, Optical Coatings for Energy Efficiency and Solar Applications, in Durable innovative solar optical materials-the international challenge. Houston, (1982).
[7] Q. Cai, J. Hu, Effect of UVA/LED/TiO2 Photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. Water. Re. 140 (2018) 251-260. Available: https://doi.org/10.1016/j.watres.2018.04.053.
[8] H.R. Pouretedal, Visible photocatalytic activity of co-dapted TiO2/Zr, N nanoparticles in wastewater treatment of nitrotoluene sample. J. Alloys. Compd. 735 (2018) 2507-2511. Available: https://doi.org/10.1016/j.jallcom.2017.12.018.
[9] G. Chiarello, M. Dozzi, E. Selli, TiO2 - based materials for Photocatalytic hydrogen production. J. Energy. Chem. 26(2) (2017) 250-258. Available: https://doi.org/10.1016/j.jechem.2017.02.005.
[10] T. Jedsukontorn, T. Uneo, N. Saito, M. Hunsom, Narrowing bandgap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. Journal of Alloys and Compounds. 757 (2018) 188-199. Available: https://doi.org/10.1016/j.jallcom.2018.05.046.
[11] B. Richards, Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells, 79(3) (2003) 369-390. Available: https://doi.org/10.1016/S0927-0248(02)00473-7.
[12] A. Majeed, J. He, L. Jiao, X. Zhong, Z. Sheng, Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering. Nanoscale Res. Lett. 10(56) (2015) 91. Available: https://doi.org/10.1186/s11671-015-0732-7.
[13] L. Bait, L. Azzouz, N. Saoula, N. Madaoui, Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Appl. Surf. Sci. 395 (2017) 72-77. Available: https://doi.org/10.1016/j.apsusc.2016.07.101.
[14] R.E. Krebs, The History and use of our Earths Chemical Elements. GreenWood, Press, 2006.
[15] S. Ikhmayies, Advanced in silicon solar cells. Springer, (2008).
[16] S.M. Manakov, K.K. Dikhanbaev, M.A. Ikhankyzy, T.I. Taurbayev, Z.A. Mansurov, A.B. Lesbayev, Y. Sagidolda, Light Trapping Enhancement in Gallium Arsenide Solar Cells, Journal of Nanoelectronics and Optoelectronics. Journal of Nanoelectronics and Optoelectronics. 9(4) (2014) 511-514. Available: https://doi.org/10.1166/jno.2014.1626. [17] U. MANDADAPU, S.V. VEDANAYAKAM, K. TYAGARAJAN, M. RAJA REDDY, B.J. BABU, OPTIMISATION OF HIGH EFFICIENCY TIN HALIDE PEROVSKITE SOLAR CELLS USING SCAPS-1D. International Journal of Simulation & Process Modelling. 13(3) (2018) 221-227. Available: https:// doi/abs/10.1504/IJSPM.2018.093097.
[18] T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations. Solar Energy Material & Solar Cells. 87(1-4) (2005) 757-769. Available: https://doi.org/10.1016/j.solmat.2004.07.049.
[19] P.M. Sommeling, B.C. Oregan, R.P. Haswell, H.J.P. Smith, N.J. Baker, J.J.T Smits, J.M. Kroon, J.A.M. Van Roosmalen, Influence of a TiCL4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B, 110(39) (2006) 19191-19197. Available: https:// doi/abs/10.1021/jp061346k.
[20] J. Hu, P. Liu, M. Chen, S. Li, Y. Yang, Synthesis and first principle calculation of TiO2 rutile nanowire electrodes for dye-sensitized solar cells. Int. J. ElectroChem. Sci. 12 (2017) 9725-9735. Available: http://electrochemsci.org/doi:10.20964/2017.10.47.
[21] A. Zabon, S.T. Aruna, S. Tirosh, B.A. Gregg, Y. Mastai, The effect of the preparations condition of TiO2 colloids on their surface structures. J. Phys. Chem. B. 104(17) (2000) 4130-4133. Available: https://doi.org/10.1021/jp993198m.
[22] D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R.D. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase,brookite and rutile. Nanotechnology. 19 (2008) 145605. Available: https://doi.org/10.1088/0957-4484/19/14/145605.
[23] Z. Lin, C. Jiang, C. Zhu, J. Zhang, Development of inverted organic solar cells with TiO2 interface layer by using low-term-perature atomic layer deposition. ACS Appl. Mater. Interfaces. 5(3) (2013) 713-718. Available: https://doi.org/10.1021/am302252p.
[24] M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films. 280(1-2) (1996) 20-25. Available: https://doi.org/10.1016/0040-6090(95)08239-5.
[25] J. Yu, X. Zhao, J. Du, W. Chen, Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing, J. Sci. Technol. 17 (2007) 163-171. Available: https://doi.org/10.1023/A:1008703719929.
[26] J. Hu, R.G. Gordan, Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition. J. Appl. Phys. 71(2) (1992) 880. Available: https://doi.org/10.1063/1.351309.
[27] J.-H. Kim, S. Lee, H.-S. Im, the effect of target density and its morphology on TiO2 thin films grown on Si (100) by PLD. Appl. Surf. Sci. 151(1-2) (1999) 6-16. Available: https://doi.org/10.1016/S0169-4332(99)00269-X.
[28] C.H. Heo, S.B. Lee, J.H. Boo, Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin solid films. 475(1-2) (2005) 183-188. Available: https://doi.org/10.1016/j.tsf.2004.08.033.
[29] T. Minami, H. Sato, K. Ohashi, T. Tomofuji, S. Takata, Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering. J. Cryst. Growth. 117(1-4) (1992) 370-374. Available: https://doi.org/10.1016/0022-0248(92)90778-H.
[30] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. ACS Publications. 107(7) (2007) 2891-2959. Available: https://doi.org/10.1021/cr0500535.
[31] A. Hadipour, D. Cheyns, P. Heremans, B.P. Rand, Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells. Adv. Energy. Mater. 1 (2011) 930-935. Available: https://doi.org/10.1021/cr0500535.
[32] J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. More-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano. Lett. 14(2) (2013) 724-730. Available: https://doi.org/10.1021/nl403997a.
[33] U.J. Krull, M. Thompson, Encyclopedia of Physical science and Technology: Analytical Chemistry. 3rd, Academic Press, (2001).
[34] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Materials Research. Bulletin. 3(1) (1968) 37-46. Available: Available: https://doi.org/10.1016/0025-5408(68)90023-8.
[35] Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorode superstructures. J. Phys. Chem. C. 111(6) (2007) 2709-27014. Available: https:// doi/abs/10.1021/jp066519k.
[36] K. Bange, C.R. Ottermann, O. Anderson, U. Jeschkowski, R.M. Laube Feile, Investigations of TiO2 films deposited by different techniques. Thin Solid Films. 197(1-2) (1991) 279-285. Available: https://doi.org/10.1016/0040-6090(91)90238-S.
[37] L. Williams, M.D.W. Hess, Structural properties of titanium dioxide films deposited in an rf glow discharge. Journal of Vacuum Science & Technology. 1(4) (1983) 1810. Available: https://doi.org/10.1116/1.572220.
[38] M.H. Suhail, G. Mohan Rao, S. Mohan, Dc reactive magnetron sputtering of titanium‐structural and optical characterization of TiO2 films. J. Appl. Phys. 71(3) (1992) 1421. Available: https://doi.org/10.1063/1.351264.
[39] S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive DC Plasmatron Sputtering. Thin Solid Films. 83(2) (1981) 239-245. Available: https://doi.org/10.1016/0040-6090(81)90673-8.
[40] W.T. Pawlewicz, R. Busch, Reactively sputtered oxide optical coatings for inertial confinement fusion laser components. Thin Solid Films. 63(2) (1979) 251-256. Available: https://doi.org/10.1016/0040-6090(79)90023-3.
[41] D.R. Mardare, The influence of heat treatment on the optical properties of titanium oxide thin films. Materials Letters. 56(3) (2002) 210-214. Available: https://doi.org/10.1016/S0167-577X(02)00441-X.
[42] Y.-Q. Hou, D.M. Zhuang, M.Z. Zhang, M.S. Wu, Influence of annealing temperature on the properties of titanium oxide thin film. Applied Surface Science. 218(1-4) (2003) 98-106. Available: https://doi.org/10.1016/S0169-4332(03)00569-5.
[43] P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films. Applied. Surface. Science. 24(3) (2014) 218-225. Available: https://doi.org/10.1016/j.pnsc.2014.05.010.
[44] [44] M.C. Liao, H. Niu, G. Chen, Effect of sputtering pressure and post-annealing on hydrophilicity of TiO2 thin films deposited by reactive magnetron sputtering. Thin Solid Film. 518(24) (2010) 7258-7262. Available: https://doi.org/10.1016/j.tsf.2010.04.106.
[45] A. Wiatrowski, M. Mazur, A. Obstarczyk, D. Wojcieszak, D. Kaczmarek, J. Morgiel, D. Gibson, Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow. Coatings. 8(11) (2018) 412. Available: https://doi.org/10.3390/coatings8110412.
[46] O.-G. Simionescu, C. Romanit, O. Tutunaru, V. Ion, O. Buiu, A. Avram, RF Magnetron Sputtering deposition of TiO2 Thin Films in a Small Continouos Oxygen Flow Rate. coatings. 9(7) (2019) 442. Available: https://doi.org/10.3390/coatings9070442.
[47] M.Soussi, A. Ait hssi, M.Boujnah, K. Abouabbasi, A. Asbayou, A. Elfanaoui, R. Markazi, A. Ihlal, K. Bouabid, Electronic and Optical Properties of TiO2 Thin Films: Combined Experimental and Theoretical Study. Journal of Electronic Materials. 50 (2021) 4497-4510. Available: https://doi.org/10.1007/s11664-021-08976-8.
[48] N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B.U. Haq, S. Goumri-Said, Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III–V arsenides. Semicond. Sci. Technol. 28 (2013) 105015. Available: https://doi.org/10.1088/0268-1242/28/10/105015.
[49] S. Di Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B. 51(19) (1995) 13023. Available: https://doi.org/10.1103/PhysRevB.51.13023.
[50] C. Lee, X. Gonze, Dielectric constants and Born effective charges of TiO2 rutile. Phys. Rev. B. 49 (1994) 14730. Available: https://doi.org/10.1103/PhysRevB.49.14730.
[51] M.M. Islam, T. Bredow, A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys. Rev. B. 76(4) (2007) 1. Available: https://doi.org/10.1103/PhysRevB.76.045217.
[52] F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke–Johnson exchange potential. J. Phys. Condens. Matter, 19 (2007)196208. Available: https://doi.org/10.1088/0953-8984/19/19/196208.
[53] A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, X. Portier, Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating. Int. J. Hydrogen Energy. 36 (2011) 4130-4133. Available: https://doi.org/10.1016/j.ijhydene.2010.07.057.
[54] N. J. Shivaramu, K. R. Nagabhushana, B.N. Lakshminarasappa, F. Singh, Ion beam induced luminescence studies of sol gel derived Y2O3:Dy3+ nanophosphors. Journal of Luminescence. 169(B) (2016) 627-634. Available: https://doi.org/10.1016/j.jlumin.2015.07.054.
[55] M. K. Woka, L. Ottaviano, J. Szuber, AFM study of the surface morphology of L-CVD SnO2 thin films. Thin Solid Films. 515(23) (2007) 8328-8331. Available: https://doi.org/10.1016/j.tsf.2007.03.035.
[56] A. E. Lita, J. E. Sanchez Jr., Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution. J. Appl. Phys. 85(2) (1999) 876. Available: https://doi.org/10.1063/1.369206.
[57] D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures. Appl. Surf. Sci. 253(23) (2007) 9085-9090. Available: https://doi.org/10.1016/j.apsusc.2007.05.032.
[58] H.C. Ward, T.R. Thomas, Rough Surfaces, Ed., Longman, London, 1982.
[59] G. B. Williamson, R. C. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye Scherrer spectrum. Phil. Mag. 1(1) (1956) 34-46. Available: https://doi.org/10.1080/14786435608238074.
[60] B.R. kumar, T.S. Rao, AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminium oxide thin films, Digest Journal of Nanomaterials and Biostructures. 7(4) (2012) 1881-1889.
[61] K. Wysocka, A. Ulatowska, J. Bauer, I. Holowacz, B. Savu, G. Stanciu, Optica Applicata. 38 (2008) 130. Available: https://doi.org/10.17482/uumfd.309657.
[62] N.P. Poddar, S.K. Mukherjee, Anatase phase evolution and its stabilization in ion beam sputtered TiO2 thin films, Thin Solid Films. 666 (2018) 113-120. Available: https://doi.org/10.1016/j.tsf.2018.09.038.
[63] P. Singh, D. Kaur, Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering. Physica. B: Condensed Matter. 405(5) (2010) 1258-1266. Available: https://doi.org/10.1016/j.physb.2009.11.061.
[64] B.N.Chapman, Sputtering InGlow Discharge Processes—sputtering and Plasma Etching. Wiley, NewYork, NY, USA, (1980) 177–296.