Design of high sensitivity and high FoM refractive index biosensor based on 2D-photonic crystal

Document Type : Articles

Authors

1 Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Faramarz boulevard

Abstract

This paper aims at proposing a new design
based on the refractive index using 2D photonic crystals
(PCs) for diagnosing basal cell carcinoma (BCC). This
project consists of a square array of GaAs rods in SiO2.
This structure has two inlet and outlet waveguides and a
micro-cavity. Waveguides are employed to couple light
to the cavity, and the cavity to inject analyte into it. Some
PC rods were used to separate the cavity from the inlet
and outlet waveguides. The results show that by injecting
an analyte into the cavity and changing its refractive
index, a shift occurs in the resonance wavelength of the
transmission spectrum. The high sensitivity coefficient
obtained for this sensor is 730 nm/RIU and its high
Figure of Merit (FoM) is 11428. For numerical analysis
of the transmission spectrum, Q-factor, and sensor
sensitivity, the finite-difference time-domain (FDTD)
method was used. High simplicity, sensitivity, FoM make
it suitable for biosensing applications.

Keywords


[1] J.D.Joannopoulos, P.R. Villeneuve, and S. Fan. Erratum: Photonic crystals: putting a new twist on light. Nature. [online]. 387(6635) ( 1997, March) 830-830. Available: https://www.nature.com/articles/386143a0
[2] Q.Yan, L. Wang, and X.S. Zhao. Artificial Defect Engineering in Three-Dimensional Colloidal Photonic Crystals. Advanced Functional Materials. [online]. 17(18) (2007, Nov.) 3695-3706. Available: https://doi.org/10.1002/adfm.200600538
[3] C.-C. Wang, and L.-W. Chen. Channel drop filters with folded directional couplers in two-dimensional photonic crystals. Physica B: Condensed Matter. [online]. 405(4) (2010, Feb.) 1210-1215. Available: https://doi.org/10.1016/j.physb.2009.11.044
[4] B. Saghirzadeh Darki, and N. Granpayeh. Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Optics Communications. [online]. 283(20) (2010, Oct.) 4099-4103. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401810006073
[5] M. Lee, and P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection. OPTICS EXPRESS. [online]. 15(8) (2007, Apr.) 4530-4535. Available: https:// DOI: 10.1364/OE.15.004530
[6] M.Djavid, and A.M. Ghaffari, and M.S.Abrishmian. Photonic_Crystal_Narrow_Band_Filters_Using Biperiodic Structures. Journal of Applied sciences. [online]. 8(10) (2008) 1891-1897. Available: https://scialert.net/fulltext/?doi=jas.2008.1891.1897&org=11
[7] S. Robinson, and r. Nakkeran. Investigation on Photonic Crystal based Filter using Square, Circular and Hexagonal rods. International Conference on Computer, Communication and Electrical Technology – ICCCET. [online]. (2011, March). Available: https://ieeexplore.ieee.org/abstract/document/5762485
[8] Z. Qiang and W. Zhou. Optical add-drop filters based on photonic crystal ring resonators. OPTICS EXPRESS. [online]. 15(4) (2007, Feb.) 1823-1831. Available: https://opg.optica.org/oe/abstract.cfm?uri=OE-15-4-1823
[9] J.J.V Olmos, M. Tokushima, and K.I. Kitayama. Photonic Add–Drop Filter Based on Integrated Photonic Crystal Structures. IEEE Journal of Selected Topics in Quantum Electronics. [online]. 16(1) (2010, Jan.) 332-337. Available: https://doi: 10.1109/JSTQE.2009.2028901
[10] P. Andalib, and N. Granpayeh, Optical Add/drop Filter Based on Dual Curved Photonic Crystal Resonator. IEEE/LEOS International Conference on Optical MEMs and Nanophotonics. [online]. (2008, Aug.). Available: https://doi: 10.1109/GROUP4.2008.4638161
[11] F. Monifi, and A.G.M. Djavid, and M.S. Abrishamian. A_New_Bandstop_Filter_Based_on_Photonic_Crystals. Progress In Electromagnetics Research Symposium. [online]. ( 2008, July) 674-677. Available: https://www.researchgate.net/publication/266228117
[12] V. Fallahi , M.Seyfouri. Novel Structure of Optical Add/Drop Filters and Multi-Channel Filter Based On Photonic Crystal for Using In Optical Telecommunication Devices. Journal of Optoelectronical Nanostructures. [online]. 4(2) (2019, Nov.) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[13] Z. Rashki, S.J.S.M.C., Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter.. Journal of Optoelectronical Nanostructures (JOPN). [online]. 3(3) (2018, Summer) 59-78, Available: http://jopn.miau.ac.ir/article_3046.html
[14] V. Fallahi, M.Seyfouri. Design of an Improved Optical Filter Based on Dual-Curved PCRR for WDM Systems. Journal of Optoelectronical Nanostructures (JOPN). [online]. 2(3) (2017, Autumn) 45-56. Available: http://jopn.miau.ac.ir/article_2573.html
[15] Q. Gong, and X. Hu, Photonic photonic crystal sensors, in Photonic Crystals: Principles and Applications, Taylor & Francis Group, Pan Stanford publishing, 2014, 336-340, Available: https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.1201/b15654&type=googlepdf
[16] R.V. Nair, and R. Vijaya. Photonic crystal sensors: An overview. Progress in Quantum Electronics. [online]. 34(3) (2010, May) 89-134. Available:https://doi: 10.1016/j.pquantelec.2010.01.001
[17] M. Danaie, and B. Kiani. Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics and Nanostructures - Fundamentals and Applications. [online]. 31 (2018, Sep.) 89-98.
Available:https://doi: 10.1016/j.photonics.2018.06.004
[18] A. Shi, R. Ge, and J. Liu. Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity. Superlattices and Microstructures. [online]. 133 (2019, Sep.) 106198.
Available: https://doi.org/10.1016/j.spmi.2019.106198
[19] S. Mandal, and D. Erickson. Nanoscale optofluidic sensor arrays. Optics Express. [online]. 16(3) ( 2008, Jan.) 1623-1631.
Available:https://doi: 10.1364/OE.16.001623
[20] V. Fallahi , M.Seifouri. Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications. Journal of Optoelectronical Nanostructures. [online]. 3(4) (2018, Autumn) 59-70. Available: http://jopn.miau.ac.ir/article_3262.html
[21] S. M. Hosein, M.S. Jalali, G. Akbarizadeh, Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators. [online]. 4(3) (2019, Autumn) 59-72, Available: http://journals.miau.ac.ir/article_3620.html
[22] J.D. Joannopoulos, et al, molding the flow of light, in Photonic crystals, 2nd. Edition, Princeton University Press; 2008, Available: https://www.amazon.com/Photonic-Crystals-Molding-Light-Second/dp/0691124566
[23] Y. Tsuji, Y. Morita, and K. Hirayama. Photonic Crystal Waveguide Based on 2-D Photonic Crystal With Absolute Photonic Band Gap. IEEE Photonics Technology Letters. [online]. 18(22) (2006, Nov.) 2410-2412.
Available: https://doi: 10.1109/lpt.2006.885295
[24] F.-l. Hsiao, and C. Lee. Computational Study of Photonic Crystals Nano-Ring Resonator for Biochemical Sensing. IEEE Sensors Journal. [online]. 10(7) (2010, July) 1185-1191.
Available:https:// doi: 10.1109/JSEN.2010.2040172
[25] E. Chow, et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters. [online]. 29(10) (2004, May) 1093-1095. Available: https://opg.optica.org/ol/abstract.cfm?uri=OL-29-10-1093
[26] C. Caër, et al. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Optics Letters. [online]. 39(20) ( 2014, Oct.) 5792-5794. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-39-20-5792
[27] A. Benmerkhi, M. Bouchemat, and T. Bouchemat. Improved sensitivity of the photonic crystal slab biosensors by using elliptical air holes. Optik. [online]. 127(14) ( 2016, july) 5682-5687.
Available:https://doi.org/10.1016/j.ijleo.2016.03.057
[28] S. Zlatanovic, et al. Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sensors and Actuators B: Chemical. [online]. 141 (2009, Aug.) 13-19.
Available:https://doi: 10.1016/j.snb.2009.06.007
[29] M. Lee , and P.M. Fauchet. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express. [online]. 15(8) (2007, Apr.) 4530-4535. Available: https://doi: 10.1364/OE.15.004530
[30] H.S. Dutta, and S. Pal. Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Optical and Quantum Electronics. [online]. 45(9) (2013, May) 907-917.
Available:https://link.springer.com/article/10.1007/s11082-013-9697-x
[31] H.S. Dutta, A.K. Goyal, and S. Pal. Sensitivity enhancement in photonic crystal waveguide platform for refractive index sensing applications. Journal of Nanophotonics. [online]. 8(1) (2014, Jun.) 083088. Available: https://doi.org/10.1117/1.JNP.8.083088
[32] Y.-n. Zhang,., Y. Zhao, and Q. Wang. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sensors and Actuators B: Chemical. [online]. 184 (2013, Jul.) 179-188. Available: https://doi.org/10.1016/j.snb.2013.04.082
[33] A. Harhouz, and A. Hocini. Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. Journal of Electromagnetic Waves and Applications. [online]. 29(5) (2015, March) 659-667. Available: https://doi: 10.1080/09205071.2015.1012597
[34] X .Wang, et al. Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Optics Communications - OPT COMMUN. [online]. 281 (2008, March) 1725-1731. Available: https://doi: 10.1016/j.optcom.2007.11.040
[35] X. Wang, et al. Photonic crystal refractive index sensing based on sandwich structure. Optik. [online]. 123(23) (2012, Dec.) 2113-2115 https://doi.org/10.1016/j.ijleo.2011.10.008
[36] A. Hocini, and A. Harhouz. Modeling and analysis of the temperature sensitivity in two-dimensional photonic crystal microcavity. Journal of Nanophotonics. [online]. 10(1) (2016, Feb.) 016007.
Available:https://doi: 10.1117/1.jnp.10.016007
[37] D. Yang, H. Tian, and Y. Ji. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Optics Express. [online]. 19(21) (2011, Sep.) 20023-20034. Available: https://doi.org/10.1364/OE.19.020023
[38] L. Huang, et al. Design low crosstalk ring-slot array structure for label-free multiplexed sensing. Sensors (Basel). [online]. 14(9) (2014, Aug.) 15658-68. Available:https://doi: 10.3390/s140915658 [39] S. Upadhyay, VL Kalyani. High sensitive refractive index sensor based on 2D-photonic crystal. IJERT. [online]. 4 (2015, Feb.) 1006-1010. Available: https://www.ijert.org/high-sensitive-refractive-index-sensor-based-on-2d-photonic-crystal
[40] S. Jindal, et al. Nanocavity-Coupled Photonic Crystal Waveguide as Highly Sensitive Platform for Cancer Detection. IEEE Sensors Journal. [online]. 16(10) (2016, May) 3705-3710. Available: https://doi: 10.1109/jsen.2016.2536105
[41] M. Ammari, F. Hobar, and M. Bouchemat. Photonic crystal microcavity as a highly sensitive platform for RI detection. Chinese Journal of Physics. [online]. 56(4) (2018, Aug.) 1415-1419. Available:https://doi: 10.1016/j.cjph.2018.05.010
[42] F. Rahman-Zadeh, M. Danaie, and H. Kaatuzian. Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electronics Review. [online]. 27(4)( 2019, Dec.) 369-377. Available: https://doi: 10.1016/j.opelre.2019.11.007
[43] A.Tavousi, M.R. Rakhshani, and M.A. Mansouri-Birjandi. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Optics Communications. [online]. 429 (2018, Dec.) 166-174. Available: https://doi.org/10.1016/j.optcom.2018.08.019
[44] D.M. Pozar, Microwave engineering, 4th. ed., John wiley & sons, 2012, 6-15.
Available:https://www.wiley.com/en-ie/Microwave+Engineering,+4th+Edition-p-9780470631553
[45] M. Soljačić, et al., Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, [online]. 19(9) (2002, Sep.) 2052-2059, Available: https://doi: 10.1364/JOSAB.19.002052
[46] K.M. Leung, and Y.F. Liu. Photon band structures: The plane-wave method. Physical Review B. [online]. 41(14) (1990, May) 10188-10190. Available:https://doi: 10.1103/PhysRevB.41.10188
[47] K.M. Ho, C.T. Chan, and C.M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters. [online]. 65(25) (1990, Dec.) 3152-3155. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.65.3152
[48] T.S. Mostafa, N.A. Mohammed, and E.-S.M. El-Rabaie. Ultracompact ultrafast-switching-speed all-optical 4 × 2 encoder based on photonic crystal. J. Comput. Electron. [online]. 18(1) ( 2019, Nov.) 279–292. Available: https://link.springer.com/article/10.1007/s10825-018-1278-6
[49] F.-L. Hsiao, and C. Lee. Novel Biosensor Based on Photonic Crystal Nano-Ring Resonator. Procedia Chemistry. [online]. 1(1) (2009, Sep.) 417-420. Available:https://doi.org/10.1016/j.proche.2009.07.104
[50] S. Olyaee, and S. Najafgholinezhad. Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator. Applied Optics. [online]. 52(29) (2013, Oct.) 7206 Available: https://doi.org/10.1364/AO.52.007206
[51] S. Olyaee, S. Najafgholinezhad, and H. Alipour Banaei. Four-channel label-free photonic crystal biosensor using nanocavity resonators. Photonic Sensors. [online]. 3(3) (2013, Feb.) 231-236. Available:https://doi: 10.1007/s13320-013-0110-y
[52] S. Olyaee, and A. Mohebzadeh-Bahabady. Designing a novel photonic crystal nano-ring resonator for biosensor application. Optical and Quantum Electronics. [online]. 47(7) (2014, Nov.) 1881-1888.
Available:https://doi: 10.1007/s11082-014-0053-6
[53] S. Najafgholinezhad, and S. Olyaee. A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator. Optik. [online]. 125(21) (2014, Nov.) 6562-6565.
Available:https://doi: 10.1016/j.ijleo.2014.08.043
[54] N.A. Mohammed, et al. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results in Physics. [online]. 14 (2019, Sep.) 102478. Available: https://doi.org/10.1016/j.rinp.2019.102478