Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2)orthorhombic Polymorphs: DFT Study

Document Type : Articles

Authors

Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

Based on the calculations of density functional theory
and Generalized Gradient approximation (GGA),
mechanical, electronic, optical and thermoelectric
properti BaFe2-xZnxAs2 (x=0,1,2) have been investigated
in orthorhombic phase. For all three BaFe2-xZnxAs2
(x=0,1,2), the energy curves have an equilibrium point in
terms of their volume. For x=1 and x=2, the bonds take
on an ionic shape. Electronic calculations show that by
applying the modified Becke-Johonsom (mBJ)
approximation, the x=2 compound is converted to a ptype
semiconductor with a gap of 0.11 eV. However,
magnetic behavior can be seen for the other two
impurities. At x=2, the band structure illustrates a direct
gap. Optical diagrams display that the parts of the
dielectric function exhibit strong metallic behavior for
impurities x=0, 1, and also an optical gap can be detected.
Moreover, the Seebeck coefficient provides that a good
stability is observed in its behavior at room temperature
onwards to reach the saturation limit of 200 μvK-1.
Additionally, the figure of merit reaches a saturation limit
in the range of 0.6 to 0.7 at this temperature range.

Keywords


[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu , Superconductivity at 39 K in magnesium diboride. Nature Phys. Rev. 47, 777-780.410, (2001) 63-64.
[2] W.L. McMillan, Transition Temperature of Strong-coupled superconductors. Phys. Rev. 167, (1968) 331-344.
[3] Y. Kamihara, T. Watanabe, M. Hirano, H. J. Am. Hosono,  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. Chem. Soc, 160, (2008) 3296.
                Doi:  https://www.doi.org/10.1021/ja800073
[4] I.R. Shein, A.L. Ivanovskii, Elastic, electronic properties and intra-atomic bonding in orthorhombicand tetragonal polymorphs of BaZn2As2 from first-principles calculations, Journal of Alloys and Compounds 583 , (2014) 100–105.
[5] I. Zutic, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, (2004) 323.
[6] H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V.A. Dinh,P.H. Dederichs, Theory of ferromagnetic semiconductors,Phys. Stat. Sol. (a) 204, (2007) 15.
                Doi:  https://www.doi.org/10.1103/PhysRevB.59.9818
[7] A. L .Ivanovskii , Magnetic effects induced by sp impurities and defects in nonmagnetic sp materials, Phys.-Usp. 50, (2007) 1031.
[8] T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides, Nature Mater. 9, (2010) 965.
[9].Bardeen. J, Cooper. N. L, Scherieffer, Theory of dirty superconductors, Phys. Rev. 108. (1957) 1175.
[10] Y. Kamihara , T . Watanabe, M. Hirano, H. Hosono,” Iron-Based Layered Superconductor:  LaOFe J. Am Chem. Soc., 130,11,(2008) 3296_ 3297.
[11] J.H. Tapp, Z.J. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy,LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K. Phys. Rev. B 78, (2008) 060505.
[12] Q. Huang, Y. Qiu, W. Bao, M.A. Green, J.W. Lynn, Y.C. Gasparovic, T. Wu, G. Wu, X.H. Chen, Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors, Phys. Rev. Lett  101 (2008) 257003.
Doi: https://doi.org/10.1103/PhysRevLett.101.257003
[13] X. H .Chen, T .Wu, G. Wu, R .H. L iu, H .Chen, D .F. Fang, Superconductivity at 43 K in SmFeAsO1-xF x Nature 453(7196) , (2008) 761-762.
[14] G .F. Chen, Z.Li, D.Wu, G.Li, W.Z.Hu, J.Donng, P.Zheng,J.L.Luo, N.L.Wang , Superconductivity at 41 K and its competition with spin-density-wave instability inlayered CeO1−xFxFeAs Phys. Rev. Lett. 100 (2008) 247002. Doi: https://www.doi.org/10.1103/PhysRevLett.100.247002
[15] W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (31) ,(1996) 12974–12980.
[16] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (4A) ,(1965) A1133.
[17] P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (2) (1990) 399–415.
[18] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, , An augmented plane wave+ local orbitals program for calculating crystal properties. Phys. Rev. B 64, (2001) 195134.
[19] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, (1996)  3865.
[20] A. Rajabpour, L. Seidabadi, M. Soltanpour, Calculating the Bulk Modulus of Iron and Steel Using Equilibrium Molecular Dynamics Simulation, Procedia Materials Science 11, ( 2015 ) 391 – 396
[21] N. Amani, M. Hantehzadeh, H. Akbari, A. Boochani, Electronic, optical and thermoelectric properties of the WS2–GaN interfaces: a DFT study,International Nano Lettersvolume 10, (2020)  249–261.
[22] S. Lemal, F. Ricci, D. I. Bilc, M.J. Verstraete, P.Ghosez, Magnetic instabilities in doped Fe2YZ full-Heusler thermoelectric compounds, Physics Review B 100, (2019) 161201.
[23] S. D. Guo, L. Qiu, Thermoelectric properties of topological insulator BaSn2, J. Phys. D Appl. Phys. 50, (2017)  015101.
[24] D.K. Ko, Y.J. Keng, C.B. Murray, Enhanced thermopower via carrier energy filtering in solution-processablePt–Sb2Te3 nanocomposites, Nano Lett. 11, (2011) 2841.
[25] L. Muchler, F. Casper, B. Yan, S. Chadov, C. Felser, Frontispiece, topological insulators and thermoelectric materials, Phys. Status Solidi RRL 7, (2013) 91–100.
[26] Y.V. Ivanov, A.T. Burkov, D.A. Pshenay-Severin, Thermoelectri properties of topological insulators, Phys. Status Solidi B 255.7,  (2018) 1800020.  
[27] Hai-Long Sunet Al, Remarkably High Thermoelectric Efficiencies of the Half-HeuslerCompounds BXGa (X = Be, Mg, and Ca), ACS Appl. Mater. Interfaces 12 (2020) 5838−584.
[28] Q. Y. Xue, H. J.Liu, D. D.  Fan, ,L. Cheng,  B. Y. Zhao, J. Shi . LaPtSb, A Half-Heusler Compound with High Thermoelectric Performance. Phys. Chem. Chem. Phys. 18 (2016) 17912−17916.
[29] M. Hong, T.Wang, T.Feng, Q.Sun, Xu. SMatsumura, S.Pantelides, S. T. Zou, J,Chen, Z.-G, Strong Phonon-Phonon Interactions Securing Extraordinary Thermoelectric Ge 1-x SbxTe with Zn-Alloying-Induced Band Alignment. J. Am. Chem. Soc. 141, (2019) 1742−1748.
[30] D. LI. Guo, C. Li, K. Shao, B.Chen, D. Ma, Y. Sun, J. Zeng, W, The Anisotropic Thermoelectricity Property of AgBi3S5 by First- Principles Study. J. Alloys Comp.773, (2019) 812−818.
[31] Z. J.  Yang, T.J. Antosiewicz, T. Shegai, Role of materia Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Phys. 24, 18, (2016) 20373-20381.
[32] R. yahyazadeh, Z. Hashempour,  Effect of Hydrostatic Pressure on Optical Absorption, 6(2), (2021) 1-22.
[33] S. Damizadeh, M. Nayeri, F.Kalantari Fotooh, S. Fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study, 5(4), (2020) 67-76.
[34] M.Saberi Lamraski,S. Babaee, S.M.Pourmortazavi, Study of Optical Properties, Thermal Kinetic Decomposition and Stability of Coated PETN-Litholrubine nano-Composite via Solvent/None-Solvent Method Using Taguchi Experimental Design, 4, ( 2019) 11-15.
[35] S. J.  Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals Received. 2(4),( 2017) 1-18.
[36] M.R. Mohebbifar, M. Zohrabi, Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation, 4(4) )2019)  65-80.