Development a simple and sensitive method for determination low trace of nickel by local surface plasmon resonance of citrate capped silver nanoparticles

Document Type : Articles

Authors

1 Islamic Azad university, South Tehran Branch

2 Chemistry & Chemical Engineering Research Center of Iran

3 Imam Hosein University

Abstract

Nickel is a toxic transition metal which can create serious problems in health of humans and wildlife. Thus determination of nickel in environmental samples like waters is important and inevitable. In this research a simple and sensitive method for determination of nickel in water was described based on aggregation of citrate capped silver nanoparticles. Silver nanoparticles were prepared by reduction of silver nitrate with sodium borohydride. Cefixime was as chelating agent in the assay and when nickel was added to the mixture of citrate capped silver nanoparticles and cefixime, color of citrate capped silver nanoparticles changed from light yellow to red that depend on Ni2+ concentration. As a result of aggregation, local surface plasmon resonance (LSPR) band of silver nanoparticles around 395 nm decreased and a new peak appeared in 550 nm. Control experiments with 10 other ions carried out and did not a distinct change in color or spectrum. Under optimized conditions, linear relationship between Ni2+ concentrations and the absorbance ratio of A550/A395 and limit of detection were found in the range of 2.70 µmol L-1 to 17.10 µmol L-1 and 0.80 µmol L-1, respectively. The method was applied in tap and well waters that indicate the colorimetric method has acceptable accuracy and good stability.

Keywords


[1] X. Wu, S. J. Cobbina, G. Mao, H. Xu, Z, Zhang, L. Yang, A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment, Environ. Sci. Pollut. Res., 23(9) (2016) 8244–8259.
[2] G. Ramezani,1, B. Honarvar, M. Emadi, Thermodynamic study of (pb2+) removal by adsorption onto modified magnetic graphene oxide with chitosan and cysteine, J. Optoelectron. Nanostruc., 4(3) (2019) 73-94.
[3] Ç. Büyükpınar, E. Maltepe, D. S. Chormey, N. San, S. Bakırdere, Determination of nickel in water and soil samples at trace levels using photochemical vapor generation-batch type ultrasonication assisted gas liquid separator-atomic absorption spectrometry, Microchem. J., 132 (2017) 167–171.
[4] F. R. Adolfo, P. C. Nascimento, D. Bohrer, L. M. de Carvahlo, Carine Viana, A. Guarda, A. N. Colim, P. mattiazzi, Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry, Talanta, 147 (2016) 241–245.
[5] E. Punrat, P. Tutiyasarn, S. Chuanuwatanakul, O. Chailapakul, Determination of nickel(II) by ion-transfer to hydroxide medium using sequential injection-electrochemical analysis (SIECA). Talanta, 168(2017) 286–290.
[6] S. L. Dos Anjos, J. C. Alves, S. A. R. Soares, R. G. O. Araujo, O. M. C. de Oliviera, A. F. S. Queiroz, S. L. C. Ferreira, Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP-OES, Talanta. 178 (2018) 842-846.
[7] K. M. Mayer, J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chem. Rev., 111 (2011) 3828-3857.
[8] M. Rezvani, M. Fathi Sepahvand, Simulation of surface plasmon excitation in a plasmonic nano-wire using surface integral equations, J. Optoelectron. Nanostruc.,1(1) (2016) 51-64.
[9] Z. R. Goddard, M. J. Marin, D. A. Russel, M. Searcey, Active targeting of gold nanoparticles as cancer therapeutics, Chem. Soc. Rev., 49 (2020) 8774-8789
[10] S. Z. Hosseini Minabi, A. Keshavarz, A. Gharaati, The effect of temperature on optical absorption cross section of bimetallic core-shell nano particle, J. Optoelectron. Nanostruc., 1(3) (2016) 67-76.
[11] J. H. Choi, J. H. Lee, J. Son, J. W. Choi, Noble metal-assisted surface plasmon resonance immunosensors, Sensors, vol 20, 1003, 2020.
[12] M. Zoghi, Reflection Shifts in Gold Nanoparticles, J. Optoelectron. Nanostruc., 3(1) (2019) 73-94.
[13] X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. Xia, Chemical Synthesis of Novel Plasmonic Nanoparticles, Annu. Rev. Phys. Chem., 60 (2009) 167–92.
[14] K. A.Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58 (2007) 267–297.
[15] S. Royanian, A. Abdolahzadeh Ziabari, Performance improvement of ultrathin CIGS solar cells using Al plasmonic nanoparticles: The effect of the position of nanoparticles, J. Optoelectron. Nanostruc., 5(4) (2020) 17-32.
[16] A. Pandya, P. G. Sutariya, A. Lodha, S. K. Menon, A novel calix[4]arene thiolfunctionalized silver nanoprobe for selective recognition of ferric ion with nanomolar sensitivity via DLS selectivity in human biological fluid. Nanoscale., 5(6) (2013) 2364–2371.
[17] H. K. Sung, S. Y. Oh, C. H. Park, Y. Kim, Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes, Langmuir., 29(28) (2013) 8978–8982.
[18] Y. R. Ma, H. Y. Niu, X. L. Zhang, Y. Q. Cai, Colorimetric detection of copper ions in tape water during the synthesis of silver/dopamine nanoparticles, Chem. Commun. vol. 47 (2011) 12643–12645.
[19] H. Azimi, S. H. Ahmadi, M.R. Manafi, S, H. H. Mousavi, M. Najafi, Development of an analytical method for the determination of lead based on local surface plasmon resonance of silver nanoparticles, Quím. Nova, 43(6) (2020). 760-764.
[20] H. Li, L. Zhang, Y. Yao, C. Han, S. Jin, Synthesis of aza-crown ether-modified silver nanoparticles as colorimetric sensors for Ba2+, Supramol. Chem., 22(9) (2010) 544–547.
[21] R. K. Bera, A. K. Das, C. R. Raj, Enzyme-cofactor-assisted photochemical synthesis of Ag nanostructures and shape-dependent optical sensing of Hg (II) ions, Chem. Mater., vol. 22(15) (2010) 4505–4511.
[22] M. Zhang, Yu. Q. Liu, B. C. Ye, Mononucleotide-modified metal nanoparticles: an efficient colorimetric probe for selective and sensitive detection of aluminum (III) on living cellular surfaces, Chem. Euro. J., 18(9) (2012) 2507–2513.
[23] E. Alzahrani, Colorimetric detection based on localized surface plasmon resonance optical characteristics for sensing of mercury using green synthesized silver nanoparticle, J. Anal. Method. Chem, 4 (2020) 6026312.
[24] X. Wu, Y. Xu, Y. Dong, X. Jiang, N. Zhu, Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles, Anal. Method., 5(2) (2013) 560-565.
[25] M. Elbarghouti, A. Akjouj, A. Mir, Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications, Vacuum, 180 (2020), 109497.
[26] A. Loiseau, L. Zhang, D. Hu, M. Salmain, Y. Mazouzi, R. Flack, B. Liedberg, S. Boujday, Core-shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensors, ACS Appl. Mater. Interfaces, 50 (2019) 46462-46471.
[27] E. Mauriz, Recent progress in plasmonic biosensing schemes for virus detections, Sensors, 20 (2020) 4745.
[28] F. Yaghubi, M. Zeinoddini, A. R. Saeednia, Design of localized surface plasmone resonance biosensor for immunodiagnostic of E. coli, Plasmonics, vol: 15 (2020) 1481-1487.
[29] P. Q. T. Do, V. T. Huong, N. T. T. Phuong, t. H. Nguyen, H. K. T. Ta, H. Ju, T. B. Phan, V. D. Phung, K. t. L. Thrinh, N. H. T. Tran, The highly sensitive determination of serotonin by using gold nanoparticles with a LSPR absorption wavelengths in the visible region, RSC Adv., 10 (2020) 30858-30869.
[30] J. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater., 163 (2009) 213-221.
[31] K. K. Wong, C. K. Lee, K. S. Low, M. J. Haron, Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions, Chemosphere, 50,(2003) 23-28.
[32] S. K. Vaishnav, K. Patel, K. Chandekar, J. Korram, R. Nagwanshi, K. K. Ghosh, M. L. Satnami, Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles, Spectrochim. Acta A., 179 (2017) 155–162.
[33] A. M. E. Badawy, T. P. Luxton , R.G. Silva., K. G. Scheckel, M. T. Suidan, T. M. Tolaymat., Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol., 44(4) (2010)1260-1266.
[34] J. D. Ingles, S.R. Crough, Spectrochemical Analysis, Prentice Hall, (1988)
[35] M. Zhang, Y.Q. Liu, B. C. Ye, Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst, 137(3) (2012) 601-607.
[36] L. Feng, Y. Zhang, L. Wen, L. Chen, Z. Shen, Y. Guan, Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel(II) and lead(II), Analyst., 136(20) (2011) 4197-4203.
[37] N. Chen, Y. Zhang, H. Liu, H. Ruan, C. Dong, Z. Shen, A. Wu, A supersensitive probe for rapid colorimetric detection of nickel ion based on a sensing mechanism of anti-etching, ACS Sustain. Chem. Eng., 4 (12) (2016) 6509-6516.
[38] X. Liu, Q. Lin, T.B. Wei, Y.M. Zhang, A highly selective colorimetric chemosensor for detection of nickel ions in aqueous solution, New J. Chem., 38(4) (2014) 1418-1423.
[39] J. Feng, W. Jin, P. Huang, F. Wu, Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate, J Nanopart Res., vol. 19 (2017), 306.
[40] S. Goswami, S. Chakraborty, A.K. Das, A. Manna, A. Bhattacharyya, C.K. Quah, H. K. Fun, Selective colorimetric and ratiometric probe for Ni(II) in quinoxaline matrix with the single crystal X-ray structure, RSC Adv., 4(40) (2014) 20922-20926.