[1] L. F. Kozin, Problems of Development of Hydrogen Power Engineering in Carbon nano materials in clean energy hydrogen system, in Environmental Security, 1ed.,vol 2, Ed. Ukraine, Springer: 2010.
[2] SILVACO, Data system Inc, ATLAS user manual (2016).
[3] R. Pandey, R. Chaujar, Rear contact SiGe solar cell with SiC passivated front surface for >90-percent external quantum efficiency and improved power conversion efficiency. Solar Energy, Vol.135 (Oct, 2016) 242–252.
[4] X. Zhao, D. Li, T. Zhang, B.Conrad, L.Wang, A.H. Soeriyadi, et al, short circuit current and efficiency improvement of SiGe solar cell in a GaAsP-SiGe dual junction solar cell on a Si substrate, Solar Energy Materials & Solar Cells, Vol.159 (Jan, 2017) 86–93.
[5] A. B. Poungou´e Mbeunmi, M. El-Gahouchi, R. Arvinte, A. Jaouad, R. Cheriton, M. Wilkins,et al, Direct growth of GaAs solar cells on Si substrate via mesoporous Si buffer, Solar Energy Materials & Solar Cells, Vol.217 (Nov, 2020) 110641.
[6] Pablo Cano, M. Hinojosa a, H. Nguyen, A.Morgan, D.F.Marron , I.García, et al, Hybrid III-V/SiGe solar cells grown on Si substrates through reverse graded buffers. Solar Energy Materials & Solar Cells, Vol.205 (Feb, 2020) 110246.
[7] Z. Q. Li, Y. G. Xiao, Z. M. Simon Li. Modeling of multijunction solar cells by Crosslight APSYS. Presented at The International Society for Optical Engineering Conference, SPIE 6339 (2006, September).
[8] S. Michael, A.D. Bates, M.S, Green. Silvaco ATLAS as a solar cell modeling tool, Presented at IEEE Photovoltaic Specialists Conference (2005, February).
[9] H. Tasaki, W. Y.Kim, M.Hallerdt, M. Konagai, and K. Takahashi, Computer simulation model of the effects of interface states on high-performance amorphous silicon solar cell. Journal of Applied Physics AIP Vol.63, 550 (Sep, 1988).
[10] H. Hanaei a,n, M.KhalajiAssadi, R.Saidur, Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes(CNTs)in to solar cells. Renewable and Sustainable Energy Reviews 59 (Jan, 2016) 620-635.
[11] X. Zhao a, H. Wu a, L. Yang a, Y. Wu a, Y. Sun, High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon Volume 147 (Jun, 2019) 164-171.
84 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
[12] G. Xiao, Ye Tao, J. Lu, Z. Zhang, Highly conductive and transparent carbon nanotube composite thin films deposited on polyethylene terephthalate solution dipping, Thin Solid Films, 518 (Nov, 2010) 2822–2824.
[13] S.N Jafari, A. Ghadimi, S. Rouhi, Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cell efficiency. Journal of Optoelectronical Nanostructures, Vol. 5 (2020, Jan.) 87-110. [14] K. Pourchitsaz and M. R. Shayesteh, Self heating effect modeling of a carbon nanotube-based field effect transistor (CNTFET). Journal of Optoelectronical Nanostructures, Vol. 4 (2019, Jan.) 51-66.
[15] S. Widodo, M.N. Hidayat. Fabrication of dye sensitized solar cells with spray coated carbonnano tube (CNT) based counter electrodes. Energy Procedia, Volume 68 (Apr, 2015) 37-44.
[16] Kh. J. Singh. A thin layer of Carbon Nano Tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell. Optik 135 (Jan, 2017) 256–270.
[17] B. Farhadi, M. Naserib. A novel efficient double junction InGaP/GaAs solar cell using a thin carbon nano tube layer. Optik Volume 127(15) (Aug, 2016) 6224-6231.
[18] A. R. Garfrerick. Modeling Heterogeneous Carbon Nanotube Networks for Photovoltaic Applications Using Silvaco Atlas Software. Thesis, Naval Postgraduate School, California, (Jun, 2012).
[19] Institute for micro structural science of Canada/ http://www.istc.int/en/contact-info
[20] Y. Sefidgar, H. Rasooli Saghai, H. Ghatei Khiabani Azar. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures, vol. 4 (2019) 83-102.
[21] J.W. Slotboom. Iterative scheme for 1- and 2- dimensional d.c-transistor simulation. Electronics Letters. Vol.5 NO: 26 (Dec, 1969) 677–678.
[22] H.K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices, Ed. 11(Oct, 1964) 455–465.
[23] Kh. J. Singh, N. B. Singh, S. K. Sarkar. Textured window with DLAR coating design for an effective minimization of electrical and optical losses in an efficient III–V solar cell. J. Comput. Electron. 1 (Mar, 2015) 288–299.
A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure * 85
[24] M.E.Levinshtein, S.L.Rumyantsev, M.S.Shur, Silicon-Germanum (Si1-xGex), in Properties of Advanced Semiconducter Materials: GaN, AlN, InN, BN, SiC, SiGe, Ed. New York: Jhon Wiley & sons, 2001, 149-188.
[25] M.A. Green, Solar cell fill factors: general graph and empirical expressions, Solid-State Electron. Vol.24 (8) (Aug, 1981) 788–789.
[26] N.Rosli, M.A.Ibrahim, N. A. Ludin, M. A.Teridi, K. Sopian, A review of graphene based transparent conducting films for use in solar photovoltaic application,Renewable and Sustainable Energy Reviews 99 (Sep, 2019) 83-99.
[27] Handbook of Electronic and Photonic Materials, 2ed, Springer, 2017, 523-541.
[28] H.Ferhati, F. Djeffal. Role of non-uniform Ge concentration profile in enhancing the efficiency of thin-film SiGe/Si Solar Cells, International Journal for Light and Electron, (Jan, 2017) 7-18.