Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization

Document Type : Articles

Author

Department of Physics, Rasht Branch, Islamic Azad University, Rasht, Iran.

Abstract

Influences of spin polarization on the electronic traits of undoped and Mndoped
LaCoO3 nano scale layers in the rhombohedral phase have been investigated in
this paper. First, we employed the local density approximation (LDA) method with the
generalized gradient approximation (GGA) under density functional theory (DFT). The
calculated results did not show an appropriate consistency with experimental values.
Knowing the presence of 3d orbitals in Co atom, to taking account the strong
localization of electrons, we used the local spin density approximation plus a Hubbardlike
term (LSDA+U). Calculations were performed using different U values at low
temperature and the obtained results showed high consistency with the experimental
valuesand the optimum results were obtained for U=1.The calculated band structures
along with the partial densities of states (PDOS) shows the nonmagnetic nature of
LaCoO3 at low temperatures. Also, adding Mn has a significant effect on the electronic
properties of LaCoO3. It was revealed that Mn changes the nonmagnetic characteristic
of the compound to the magnetic feature.The bandgap values for spin up (SU) and spin
down (SD) states have been calculated 0.9 eV and 1.2 eV, respectively and both states
have direct bandgap.

Keywords


[1] G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, M. Zahid, Investigation of structural and optoelectronic properties of BaThO3, Opt. Mater. 33 (Nov. 2011) 553-557.
[2] R. M. Ormerod, Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges, Chem. Soc. Rev. 32 (Nov. 2003) 1-8.
[3] S. P. S. Badwal, Stability of solid oxide fuel cell components, Sol. Sta. Ion. 143,(1) (Jun. 2001) 39-46.
[4] T. Saitoh, T. Mizokava, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Stability of solid oxide fuel cell components, Phys. Rev. B 55 (4257) (Feb. 1997) 1-12.
[5] C.L. Ma, J. Cang, First principles investigation on the band gap of the ground state of LaCoO3, Sol. Sta. Commun, 150,(41)(Nov. 2010) 1983-1986.
[6] M. Cheraghizade, Optoelectronic Properties of PbS Films: Effect of Carrier Gas, J. of Opt. Nano. 4 (spring 2019) 1-12.
[7] H. Salehi, F. Anis Hoseini, First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase, J. of Opt. Nano. 4 (spring 2019) 69-82.
[8] H. Salehi , P. Amiri, R. Zare Hasanabad, Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compound, J. of Opt. Nano. 3 (spring 2018) 53-64.
120* Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[9] S. J. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals, J. of Opt. Nano. 2 (Autumn 2017) 1-18.
[10] S. Zahra Hosseini Minabi, A. Keshavarz, A. Gharaati, The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles, J. of Opt. Nano. 1 (Autumn 2016) 67-76.
[11] H. Hsu, K. Umemoto, M. Cococcioni, R. Wentzcovitch, First-principles study for low-spin LaCoO3 with a structurally consistent Hubbard U, Phys. Rev. B 79 (125124) (March 2009) 1-9.
[12] Y. L. Lee, J. Kleis, J. Rossmeisl, and D. Morgan, Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes, Phys. Rev. B 80 (224101) (Dec. 2009) 1-20.
[13] D. Gryaznov, R. A. Evarestov, and J. Maier, Hybrid density-functional calculations of phonons in LaCoO3, Phys. Rev. B 82, (224301) (Dec. 2010) 1-5.
[14] M. Abbate, R. Potze, G. A. Sawatzky, A. Fujimori, Band-structure and cluster-model calculations of LaCoO3 in the low-spin phase, Phys. Rev. B 49 (7210) (March 1994) 1-7.
[15] M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, G. A. Sawatzky, Intermediate-spin state and properties of LaCoO3, Phys. Rev. B 54, (5309) (Oct. 1996) 1-16.
[16] H. Hsu, K. Umemoto, M. Cococcioni, R. Wentzcovitch, First-principles study for low-spin LaCoO3 with a structurally consistent Hubbard U , Phys. Rev. B 79 (125124) (March 2009) 1-9.
[17] Y. L. Lee, J. Kleis, J. Rossmeisl, D. Morgan, Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes, Phys. Rev. B 80 (224101) (Dec. 2009) 1-20.
[18] S. K. Pandey, A. Kumar, S. Patil, V. R. R. Medicherla, R. S. Singh, K. Maiti, Investigation of the spin state of Co in LaCoO3 at room temperature: Ab initio calculations and high-resolution photoemission spectroscopy of single crystals, Phys. Rev. B 77, (045123) (Jan. 2008) 1-14.
[19] J. Buckeridge, F. H. Taylor, and C. R. A. Catlow. , Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3, Phys. Rev. B 93, (155123) (Apr. 2016) 1-11.
Ab-initio LSDA study of the electronic states of nano scale layered LaCoO3/Mn … *121
[20] Xiao Wang, Ye Han, Xiaojie Song, Weihui Liu, Hongzhi Cui., Phonon spectrum and thermodynamic properties of LaCoO3 based on first-principles theory, Comp. Mat. Sci. 136, (Aug. 2017) 191–197.
[21] V. I. Anisimov, J. Zaanen, O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44, (March 1991) 943-954.
[22] H. Liu, X. Dong, Y. Li1, H. Zhang, K. Chen, Q. Hou, Y. Huang, Q. Li, XANES study of the role of Sr doping in LaCoO3, 15th International Conference on X-ray Absorption Fine Structure (XAFS15), Beijing, China Journal of Physics: Conference Series 430 (Jul. 2013) 22–28.
[23] P.G. Radaelli, S.-W. Cheong, Structural phenomena associated with the spin-state transition in LaCoO3, Phys. Rev. B 66, (094408) (Sep. 2002) 1-9.
[24] Y. Kobayashi, T. Mitsunaga, G. Fujikawa, T. Arai, M. Suetake, K. Asai, J. Harada, Structural Phase Transition from Rhombohedral to Cubic in LaCoO3, J. Phys. Soc. Jpn. 69 (Oct. 2000) 3468-3481.
[25] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Rafson, M.C. Payne, Z. Kristallogr. First principles methods using CASTEP, Zeitschrift für Kristallographie, 220 (Jul. 2005) 567-570.
[26] G. Thornton, B. C. Tofleld, A. W. J. Hewat, A Neutron Diffraction Study of LaCo03 in the Temperature Range 4.2 to 1248 K, Sol. Sta. Chem. 61 (Jul. 1986) 301-307.
[27] M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C.T. Chen, R. Potze, G. A. Sawatzky, H. Eisaki, S.Uchida, Electronic structure and spin-state transition of LaCoO3, Phys. Rev. B 47, 16124 (Jun. 1993)1-12.
[28] A. Chainani, M. Mathew, D. D. Sarma, Electron-spectroscopy study of the semiconductor-metal transition in La1-xSrxCoO3, Phys. Rev. B 46, 9976 (1992) 1-9.
[29] T. Arima, Y. Tokura, J. B. Torrance, Variation of optical gaps in perovskite-type 3d transition-metal oxides, Phys. Rev. B 48, 17006 (Dec. 1993) 1-8 .
[30] X. Zhang, G. Fu, H. Wan, Density Functional Theory Study on Spin States of LaCoO3 at Room Temperature, Chi. J. of Chem. Phys., 27, (3) (2014) 274-278.