[1] M. Amirhoseiny, M. Zandi, A. Kheiri, A comparative study of BSF layers for InGaN single-junction and multi-junction solar cells. journal of optoelectronical nanostructures. 9(1) published online (2024).
[2] A. Mahmoudloo, Investigation and Simulation of Recombination Models in Virtual Organic Solar Cell. journal of optoelectronical nanostructures.7(4) (2022) 1-12.
[3] S. R. Hosseini, M. Bahramgour, N. Delibas, A. Niaei. A simulation study around investigating the effect of polymers on the structure and performance of a perovskite solar cell. journal of optoelectronical nanostructures, 7(2) (2022) 37-50.
[4] M. rajaee, S. Rabiee. Analysis and Implementation of a New Method to Increase the Efficiency of Photovoltaic Cells by Applying a Dual Axis Sun Tracking System and Fresnel Lens Array. journal of optoelectronical nanostructures. 6 (3) (2021) 59-80.
[5] R. yahyazadeh, Z. hashempour. Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells. journal of optoelectronical nanostructures. 6(2) (2021) 1-22.
[6] S. Fonash, Semiconductor–semiconductor Heterojunction Cells, in Solar Cell Device Physics, 2nd ed., United States of America, Academic Press, Elsevier, 2010, 183-262.
[7] A. Goetzberger, J. Knobloch, and B. Voß, The Physics of Solar Cells, in Crystalline Silicon Solar Cells, Chichester, UK, John Wiley & Sons, 2014, 67–86.
[8] A. Luque and S. Hegedus, The Physics of the Solar Cell, in Handbook of Photovoltaic Science and Engineering, vol. 1. Chichester, UK, John Wiley & Sons, 2003.
[9] M. R. Salehi, M. Shahraki. Circuit modeling of waveguide grating nanostructures in ultrathin solar cells. IEEE Transactions on Nanotechnology, 16(4) (2017) 616-623.
[10] S. L. Mortazavifar, M. R. Salehi, M. Shahraki. Ultrathin nano-ring metasurface absorber in visible regime based on circuit model. The European Physical Journal Plus. 137(9) (2022) 1072.
[11] A. Willoughby and G. Conibeer, Solar Cell Materials: Developing Technologies, 1st ed. Chichester, UK: John Wiley & Sons, 2014.
[12] K. Gledhill. High-efficiency multi-junction space solar cells. presented at the Space Programs and Technologies Conference, 32 (1995) 1-4.
[13] L. Fara and M. Yamaguchi, Advanced Solar Cell Materials, Technology, Modeling, and Simulation. IGI Global, (2013).
[14] G. S. Sahoo and G. P. Mishra. Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: A simulation study. Superlattices and Microstructures, 109 (2017) 794–804.
[15] R. Oshima, M. Yamanaka, H. Kawanami, I. Sakata, and K. Matsubara. Fabrication of 0.9 eV bandgap a-Si/c-Si1-xGe1-x heterojunction solar cells presented at the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), (2014) 0202–0205.
[16] A. Aissat, F. Benyettou, S. Nacer, and J. P. Vilcot. Modeling and simulation of solar cells quantum well based on SiGe/Si. International Journal of Hydrogen Energy. 42(13) (2017) 8790–8794.
[17] A. K. Singh, J. Tiwari, A. Yadav, and R. K. Jha, Analysis of Si/SiGe Heterostructure Solar Cell. Journal of Energy, 2014 (2014) 1–7.
[18] E. Polyzoeva, S. Abdul Hadi, A. Nayfeh, and J. L. Hoyt. Reducing optical and resistive losses in graded silicon-germanium buffer layers for silicon based tandem cells using step-cell design. AIP Advances. 5(5) (2015) 057161.
[19] K. J. Singh, S. K. Sarkar. Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers. Optical and Quantum Electronics. 38(4) (2012) 1-20.
[20] M. Diaz et al., Tandem GaAsP/SiGe on Si solar cells. Solar Energy Materials and Solar Cells. 143 (2015) 113–119.
[21] L. Wang et al. Current matched three-terminal dual junction GaAsP/SiGe tandem solar cell on Si. Solar Energy Materials and Solar Cells. 146 (2016) 80-86.
[22] X. Zhao et al. Short circuit current and efficiency improvement of SiGe solar cell in a GaAsP-SiGe dual junction solar cell on a Si substrate. Solar Energy Materials and Solar Cells, 159 (2017) 86–93,
[23] J. P. Dutta, P. P. Nayak, G.P. Mishra, Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer. Optik, 127 (2016) 4156–4161.
[24] G.S. Sahoo, G.P. Mishra, Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: A simulation study. Superlattices and Microstructures. 109 (2017) 794-804.
[25] P. Cano, M. Hinojosa, H. Nguyen, et al., Hybrid III-V/SiGe solar cells grown on Si substrates through reverse graded buffers. Solar Energy Materials and Solar Cells. 205 (2020) 110246.
[26] E. Kim, M. A. Madarang, E. Ju, et al., GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation
Filter Layer. Energies. 16 (2023) 1158.
[27] NJ. Hoboken , Solar Cells and their Applications, John Wiley & Sons, Inc., 2010.
[28] E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, 1998.
[29] G. S. Sahoo, P. P. Nayak, and G. P. Mishra. An ARC less InGaP/GaAs DJ solar cell with hetero tunnel junction. Superlattices and Microstructures. 95 (2016) 115–127.
[30] C. A. Gueymard, D. Myers, and K. Emery Proposed reference irradiance spectra for solar energy systems testing. Solar Energy. 73 (6) (2016) 443–467.
[31] J. W. Leem, Y. T. Lee, and J. S. Yu. Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes. Optical and Quantum Electronics, 41(8) (2009) 605–612.
[32] N. Jain and M. K. Hudait. Design of metamorphic dual-junction InGaP/GaAs solar cell on Si with efficiency greater than 29% using finite element analysis presented at the 38th IEEE Photovoltaic Specialists Conference, (2012) 002056–002060.
[33] L. Wang et al. Material and Device Improvement of GaAsP Top Solar Cells for GaAsP/SiGe Tandem Solar Cells Grown on Si Substrates. IEEE Journal of Photovoltaics, 5(6) (2015) 1800–1804.
[34] J. Wang, Y.-J. Shen, N. Quitoriano. Growth evolution of SiGe graded buffers during LPE cooling process. Journal of Crystal Growth, 502(15) (2018) 54-63.
[35] P. Caño, M. Hinojosa, I. García, et al. GaAsP/SiGe tandem solar cells on porous Si substrates. Solar Energy. 230 (2021) 925-934.