Amplification of Output Voltage by Using Silicon Based Solar Cells, Piezoelectric and Thermoelectric Conversion Transducers: A Triple Energy Harvester

Document Type : Articles

Authors

1 Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

2 Department of Electrical Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran.

3 MSFAB, Faculty of Electrical and Computer Engineering, University of Tabriz , Tabriz, Iran.

4 Department of physics, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

Abstract

Abstract:
 We purpose a hybrid energy harvester made of silicon solar cell, piezoelectric and thermoelectric. Our simulations are carried out using the COMSOL software. For this purpose, MEMS, heat transfer and electromagnetic modules were used. We connected nine piezoelectric, one thermoelectric and one solar cell modules in series to maximize the harvested energy and provide the appropriate voltage level. It is observed that the maximum electric current and voltage is about 200mA and 5V, respectively, which is equivalent to approximately 1W. The total obtained energy was amplified by two DC/DC converters and the voltage level increased to 5V.  Also, we theoretically proved that the use of an optical window (as top and bottom contact layers) based on photonic multilayer can control surface reflection. It is found that if we use two contact layers in the front and back of the solar cell, the transmittance increases from 33% (without contact layer) to 67% (with double contact layer).

Keywords


[1] P. Gambier, S. R. Anton, N. Kong, A. Erturk and D. J. Inman, Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries. Meas Sci Technol. 23, (2011) 015101. Available: https://iopscience.iop.org/article/10.1088/0957-0233/23/1/015101.
[2] H. Ulusan, S. Chamanian, W. M. P. R. Pathirana, Ö. Zorlu, A. Muhtarog˘lu and H. Külah, hybrid energy harvesting interface electronics. Journal of Physics: Conference Series. 773 (1), (2016) 012027. Available: https://iopscience.iop.org/article/10.1088/1742-6596/773/1/012027.
[3] M. Moshrefi-Torbati, T. V. Lang, M. Hendijanizadeh, T. B. Le and S. M. Sharkh, A novel hybrid energy harvester with increased power density. Procedia Engineering. 199, (2017) 3498-3503. Available: https://www.sciencedirect.com/science/article/pii/S1877705817339589.
[4] A A Husain et al., A review of transparent solar photovoltaic technologies Renew. Sustain. Energy Rev. 94, (2018) 779–91. Available: https://www.sciencedirect.com/science/article/pii/S1364032118304672.
[5] W. Gu, T. Ma, A. Song, M. Li and L. Shen, Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Convers Manag. 198, (2019) 11800. Available: https://www.sciencedirect.com/science/article/abs/pii/S0196890419307824.
[6] B. Yang, C. Lee, W. L. Kee and S. P. Lim, Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J. Micro Nanolithography MEMS 9, (2010) 023002. Available: https://www.spiedigitallibrary.org/journals/journal-of-micro-nanolithography-mems-and-moems/volume-9/issue-2/023002/Hybrid-energy-harvester-based-on-piezoelectric-and-electromagnetic-mechanisms/10.1117/1.3373516.short?SSO=1.
[7] H. Xia, R. Chen, L. Ren, Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force:  Modeling and experiment. Sens. Actuators Phys. 257 (2017) 73–83. Available:
[8] V.  R. Challa, M. G. Prasad, F.  T. Fisher, A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18 (2009) 095029. Available:
[9]. H. Xia, R. Chen, L. Ren, Analysis of piezoelectric–electromagnetic  hybrid vibration energy harvester under different electrical boundary    conditions. Sens. Actuators Phys. 234 (2015) 87–98. Available: https://www.sciencedirect.com/science/article/abs/pii/S0924424715301060.
[10] D.  S. Kwon, H. J. Ko,  J. Kim,    Piezoelectric  and  electromagnetic  hybrid  energy  harvester  using  two cantilevers  for  frequency  up-conversion.  In  2017  IEEE  30th  International  Conference  on  Micro  Electro Mechanical Systems (MEMS). (2017) 49–52. Available: https://ieeexplore.ieee.org/document/7863336.
[11] J. Zhao, H. Zhang, F. Su, Z. Yin,  A  novel  model  of  piezoelectric-  electromagnetic  hybrid  energy harvester  based  on  vortex-induced  vibration. In 2017 International Conference on Green Energy and Applications (ICGEA). (2017) 105–108. Available: https://ieeexplore.ieee.org/document/7925464.
[12] J. Bito, R. Bahr, J. G. Hester, S. A. Nauroze, A. Georgiadis, M.  M.  Tentzeris,  A  Novel  Solar  and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things     Wireless Sensors. IEEE Trans. Microw. Theory Tech.  65 (2017) 1831–1842. Available: https://ieeexplore.ieee.org/document/7857107.
[13] R. Sriramdas, R. Pratap, An Experimentally Validated Lumped Circuit  Model for Piezoelectric and Electrodynamic Hybrid Harvesters. IEEE Sens. J. (2017) 1–1. Available: https://ieeexplore.ieee.org/document/8119794.
[14] M. Salauddin, R. M. Toyabur, P. Maharjan, M. S. Rasel, J. W. Kim, H. Cho, J. Y. Park, Miniaturized Springless  Hybrid  Nanogenerator  for  Powering  Portable  and  Wearable  Electronic  Devices  from  Human-Body-Induced Vibration. Nano Energy. 51 (2018) 61-72.
[15] D. Jalalian, A. Ghadimi, A. Kiani Sarkaleh, Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells, J. Optoelectron. Nanostructures. 5(2) (2020) 65-78. Available: https://jopn.miau.ac.ir/article_4219.html
[16] H. Izadneshan, G. Solookinejad, Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications, J. Optoelectron. Nanostructures. 3(2) (2018) 19-28. Available: https://jopn.miau.ac.ir/article_2861.html.
[17] R. Yahyazadeh, Z. Hashempour, Numerical modeling of electronic and electrical characteristics of 0.3 0.7 AlGaN/GaN multiple quantum well solar cells, J. Optoelectron. Nanostructures. 5(3) (2020) 81-102. Available: https://jopn.miau.ac.ir/article_4406.html.
[18] S. M. S. Hashemi Nassab, M. Imanieh, A. Kamaly, The effect of doping and thickness of the layers on CIGS solar cell efficiency, J. Optoelectron. Nanostructures. 1(1) (2016) 9-24. Available: https://jopn.miau.ac.ir/article_1812.html.
[19] S. Rafiee Rafat, Z. Ahangari, M. M. Ahadian, Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. J. Optoelectron. Nanostructures. 6(2) (2021) 75-90. Available: https://jopn.marvdasht.iau.ir/article_4771.html.
[20] D. Hao, L. Qi, A. M. Tairab, A. Ahmed, A. Azam, D. Luo, Y. Pan, Z. Zhang and J. Yan, Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renewable Energy. 188, (2022) 678-697. Available:
[21] N. Abdullahi, C. Saha and R. Jinks, Modelling and performance analysis of a silicon photovoltaic PV module. J. Renew. Sustain. Energy. 9, (2017) 033501. Available: https://aip.scitation.org/doi/abs/10.1063/1.4982744.
[22] W. Kobayashi, A. Kinoshita, and Y. Moritomo, Seebeck effect in a battery-type thermocell. Appl. Phys. Lett. 107, (2015) 073906. Available: https://aip.scitation.org/doi/10.1063/1.4928336.
[23] Y. Na, S. Kim, S. P. Reddy Mallem, S. Yi, K. T. Kim and K. Park, Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite. Journal of Alloys and Compounds. 924, (2022) 166575. Available:  https://www.sciencedirect.com/science/article/abs/pii/S0925838822029668.
[24] L. A. Chavez, F. O. Jimenez, B. R. Wilburn, L. C. Delfin, H. Kim, N. Love and Y. Lin, Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures. Energy Harvesting and Systems, 5, (2018) 3-10. Available: https://www.degruyter.com/document/doi/10.1515/ehs-2018-0002/html?lang=en.
[25] H. Peng, W. Guo, S. Feng and Y. Shen, A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application. Applied Energy. 322 (2022) 119548. Available: https://www.sciencedirect.com/science/article/abs/pii/S0306261922008625.
[26] V. Slabov, S. Kopyl, M. P dos Santos and A. L. Kholkin, Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting. Nano-Micro Lett. 12, (2020) 42. Available: https://link.springer.com/article/10.1007/s40820-020-0373-y
[27] D. Wang et al, Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration. Energy Convers. Manage. 171, (2018) 1134–49. Available: https://www.sciencedirect.com/science/article/abs/pii/S0196890418306617.
[28] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics. 61 (9), (1998) 1267–1324. Available: https://iopscience.iop.org/article/10.1088/0034-4885/61/9/002.
[29] R. Usharani, G. Uma and M. Umapathy, Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. Int. J. Precis. Eng. Manuf.-Green Technol. 3 (4) (2016) 343–351. Available:  https://doi.org/10.1007/S40684-016-0043-1.
[30] A. Cornogolub, P. J. Cottinet, L. Petit, Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers. Smart Mater. Struct. 25 (9), 095048 (2016). Available: https://iopscience.iop.org/article/10.1088/0964-1726/25/9/095048.
[31] C. Klingshirn, ZnO: material, physics and applications. Chem Phys Chem., 8, (2007) 782–803. Available: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.200700002.
[32] K. Zhao, J. Xie, Y. Zhao, D. Han, Y. Wang, B.  Liu and J. Dong, Investigation  on Transparent,  Conductive  ZnO:Al  Films  Deposited  by  Atomic  Layer  Deposition  Process. Nanomaterials, 12, (2022) 172-178. Available: https://pubmed.ncbi.nlm.nih.gov/35010122/.
[33] L. G. Wang, H. Chen and S.Y. Zhu, Omnidirectional gap and defect mode of one dimensional photonic crystals with single-negative materials. Phys. Rev. B 70 (24) (2004) 245102. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.70.245102.