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Abstract  
At a finite temperature, electron-electron interactions and 

energy eigenvalues were studied using in the field of 

symplectic geometry and the relativistic radial 
Schrödinger equation with the expanded exponential 

thermal potential (parabolic potential) representing the 

strong electron-electron interaction. Electron-electron 

interactions can strongly affect the effective mass, mass 

spectrum, and functionality of multi-electron quantum 

dots. A quanto-relativistic interaction's behavior and 

effects with temperature dependence in the magnetic field 

are shown to have a unique feature in semiconductor 

quantum dots. These results have important implications 

for lighting, quantum dot enhancement film, rational 

design, edge optic, new materials, spin electronics color 
filter, on-chip, visible and IR/NIR image sensor, 

photovoltaic, and fabrication of quantum dot qubits with 

predictable properties.  
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1. INTRODUCTION  

It is essential to investigate the electron-electron interaction's finite 

temperature dependence at great energy and intense contact. This connection 
holds for various possible models and explains a previously electron-electron 

interactions characteristic. In quantum dots and a very small volume and a slice 

of semiconductor, when few electrons are closely and firmly confined, they tend 

to occupy well-defined positions giving rise to the so-called “Wigner molecule”, 
a strongly correlated electron state of the matter, especially the solid and liquid 

phases of semiconductor quantum dots which arise from electromagnetic forces 

between particles. It is named after “the strong electron-electron interactions” and 
is characterized by strong fluctuations of the correlation function. We utilize 

quantum field techniques based on the creation and annihilation operators to 

tackle the study of this exotic and strong interaction system. The main study of 
this topic is the finite temperature effect and relativistic mass corrections on the 

strong electron-electron interaction in the magnetic field. This specific strong 

interaction occurs in quantum dots with low electron densities, which are analogs 

of Wigner molecules. Experimental signatures of Wigner molecules include the 
suppression of multi-electron excitation energies, which has been observed in 

SQDs [1]. In this paper, we focus on the relativistic mass effects based on the 

energy-momentum relation   𝐸2=(𝑝𝑐)2+ (𝑚0𝑐2)
2
, the Schrödinger equation in 

which is equivalent to the behavior of a system in the strong electron-electron 

interaction in the quantum dots. Based on the Power series expansion in the 

Schrödinger equation and exponential thermal potential, the behavior of a system 

is presented. Relativistic effects are taken into account by expanding √𝑝2 + 𝑚2 

in a lowest order power series of momentum and mass under the equation   

[∑ √p
i
2+mi

2+U(r)n
i=1 ] Ψ(r)=EΨ(r). The radial Schrödinger equation, and an 

analytic approach based on the symplectic geometry method of strong interactions 
in a finite temperature electrostatic field, are used to depict interaction in 

temperature-dependent terms [1-3]. The binding energy and effective mass of the 

strong electron-electron interactions are calculated using this approach. Strong 
electron-electron interactions and exotic molecular states do not conform to more 

conventional states. They include states involving electron-electron and electron-

hole states. The exotic strong electron-electron interactions are multibody 
(charged) states investigated using exponential potential and framework 

techniques, including the molecular model, atomic model, the multiparticle 

coupling model, the two-electron quantum dot Hamiltonian, the tight-binding 

model, and full configuration method. Recent experimental studies of strong 
quanto-relativistic interactions have revealed many states: electron-electron, 
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electron-light hole, electron-heavy hole, di-exciton, quadro-exciton, etc. [4, 5]. At 
finite temperatures, it has been demonstrated that the effective masses of electrons 

and holes can be significantly larger than anticipated theoretically. The Los 

Alamos National Laboratory Collaboration, LANL’s National High Magnetic 
Field Lab, and the spectroscopy capabilities in the LANL chemistry labs are 

projected to take a new dimension and open up new study areas for semiconductor 

quantum dots at finite temperature in a brand-new operation [6]. Thus, theoretical 

investigations can raise awareness and intrigue in experimental interpretations. 
Strong electron-electron interactions in the form of exotic molecules are 

investigated in this research. The energy and effective mass of a multi-electron 

system with exponential potential in the ground states are determined using the 
correlation functions' Gaussian asymptomatic behavior. Furthermore, a 

relativistic correction to the component mass is derived. The Schrödinger 

equation and the constituent electron component's mass calculate the exotic 
molecule’s (constituent electron-electron interactions) energy eigenvalue and 

effective mass. The exotic molecule mass component is defined via modifying 

correction. The effects can be localized, as in the case of exotic molecules (when 

few electrons are tightly confined in a small slice of matter, they tend to occupy 
well-defined positions, giving rise to the so-called exotic molecules, a strongly 

correlated electron state of the quantum dots), with consequences for the energy 

spectrum to states outside the dots.  Multi-particle models are effective in 
describing strong electron-electron interactions and exotic molecular state mass. 

Consequently, the strong electron-electron interactions are investigated 

concerning the electrons constituent system at a finite temperature in the external 

magnetic field 𝐵(𝑥); this notion, in conjunction with the radial Schrödinger 
equation, determines the strong quanto-relativistic characteristic of 

semiconductor quantum dots [7,8]. 
 

A. Research Aim  

In this study, the strong electron-electron interactions in semiconductor quantum 

dots are defined in this theoretical research as the Schrödinger equation solution 

of a quanto-relativistic background in the exponential potential at finite 

temperature. This opinion was formed using PUR and technique [9-11]. As is 

apparent, the electrons' behavior in their strong interactions near their 

confinement temperature is essential in settings with strong electron-electron 

interactions, including two, three, and multi electrons semiconductor quantum 

dots. Calculations using different quanto-relativistic models often provide 

imprecise results, and we cannot forecast the relativistic effective mass value. The 

electrons' effective mass and energy eigenvalues must be predicted using quanto-
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relativistic behavior. Consequently, the energy eigenvalues at a given temperature 

are presented using quantum field theory, and a connection between the 

relativistic effective mass with temperature is established.  

 

B. Projective unitary  

The behavior of the mass spectrum, the bound states, and the relativistic 

corrections to the Hamiltonian and mass in a strongly interacting environment at 

the finite temperature or in the confining potential is very important, especially in 
nano quantum dots and nanomaterials. The various model predicts the mass with 

temperature variation based on different solving methods by the Schrödinger 

equation (SE) or other equations. In a theoretical and analytical manner, the 
projective unitary technique is one of the effective methods for solving the SE. 

Therefore, the inclusion of the relativistic bound state in quantum dots at finite 

temperature is one of the most interesting subjects of contemporary theoretical 

physics. We can formulate the Hamiltonian by the PUR method for the quantum 

system in the 𝑅𝑑  space, in this case, the Hamiltonian 𝐻 = ∑
1

2

𝑑
𝑖=1 (𝑝̂𝑖

2 + 𝜔2𝑞̂𝑖
2) (in 

natural units  ℏ = 𝑐 = 1) using the canonical variables (𝑞̂, 𝑝̂) in the form of 

creation 𝑎̂+ =
1

√2
(√𝜔𝑞̂ −

𝑖

√𝜔
 𝑝̂ ) and annihilation 𝑎̂− =

1

√2
(√𝜔𝑞̂ +

𝑖

√𝜔
 𝑝̂ ) 

operators can use to find the eigenvalues of these Hermitian operators, where 
[𝑎̂−, 𝑎̂+] = 𝑑 , 𝑞̂ and  𝑝̂  are the canonical operators for the particle and satisfy 
[𝑞̂, 𝑝̂] = 𝑖 In other words, the PUR completely describes and presents the 
Hamiltonian in the correct form of these operators [12]. The modified Schrödinger 

equation 𝐻𝛹(𝑞) = 𝜀(𝐸)𝛹(𝑞) in accordance with creation and annihilation 

operator in PUR, we determine that the energy spectrum in d- demission space is 

𝜀(𝐸) = 0 and 
𝜕𝜀(𝐸)

𝜕𝜔
= 0  these conditions are the main technique for determining 

the eigenenergy of Hamiltonian [12]. 
 

2. MATERIALS AND METHODS  

Using the analytic method based on the behavior of the correlation function of 

the related field flows of charged particles is suggested [12] for determining the 

relativistic effect of strong electron-electron interactions in quantum dots at a 
finite temperature. This idea exactly can determine the quanto-relativistic 

correction to the effective mass of particles. Therefore, the component effective 

mass of the electron is defined by modifying corrections to the radial Schrödinger 

equation 𝐻̂Ψ(𝑟) = 𝐸 (𝜇)Ψ(𝑟)in the new axillary coordinate, and then the quanto-

relativistic characteristic is determined [12]. This is a good approximation for 
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defining the relativistic properties of quantum dots in strong and weak 
interactions. We determined the corrections to the effective mass of electrons in 

the confining potential, based on PUR. The modified radial Schrödinger equation 

(MRSE) obtains the strong electron-electron interactions Hamiltonian in the 
framework of quantum field theory and the scattering matrix using the appropriate 

Feynman diagram by considering the renormalization and the non-relativistic 

limit. The techniques and manners of quantum field theory have been proposed 

to present the binding energy and relativistic behavior of different systems with 
fairly arbitrary potentials presented by the SE. The relativistic mass and the 

effective mass are determined by the correlation function П(𝑟) =

⟨𝐺𝑚1
(𝑟|𝐴)𝐺𝑚2

∗ (𝑟|𝐴)⟩
𝐴

of the corresponding current of the field with the quantum 

numbers. This is presented in terms of the Green’s function and the Feynman’s 

functional path integral in non-relativistic quantum mechanics [11, 12]. 

Therefore, the correction to the mass is defined as a limit of the correlation 

function in the asymptotic limit 𝑀 = − 𝑙𝑖𝑚
|𝑟|→∞

𝑙𝑛 П(𝑟)

|𝑟|
. Therefore, the strong 

particles interactions Hamiltonian in the framework of quantum field theory 

(QFT) with correlations can be realized as a bound state if 𝑀 ≠ 𝑚1 + 𝑚2 +
⋯ , 𝑀 < ∞, then a binding condition (bound state) with a mass 𝑀 arises; if 𝑀 =
𝑚1 + 𝑚2 + ⋯, then the effective interaction cannot arise a stable and clear bound 

state and the scalar particles exist as two quanto-relativistic independent states 
with relativistic effective masses in quantum dots [12]. As we know, the radial SE 

for the relative coordinate of the system and the center of mass has been described 

based on the possibility of strong electron-electron interactions in quantum dots 
by 

 

(∑  𝑛
𝑖=1. 𝑖≠𝑗

1

2𝜇𝑒
∗

 

(𝑃𝑖
 +

𝑒

𝑐
𝐴𝑖)

2

+ 𝑈𝑡𝑜𝑡𝑎𝑙 + 𝐻𝑠𝑝𝑖𝑛) 𝛹 = 𝐸(𝜇) 𝛹.                             (1) 

 

So, quantum field theory describes systems with finite temperature as a limitless 

number of oscillators maintaining their oscillating characteristics throughout 

interactions. According to the PUR model and symplectic geometry method for 

the wave function 𝛹 (𝑟 ), we have to represent variables to describe a harmonic 

oscillator behavior for the wave function of the converted and transformed 

modified SE equation and then describe the radial Schrödinger equation in a new 
space with a different dimension [13,14]. The wave function must decrease at 

small distances, so the transformation to the upper dimensional space is realized 

by r→ 𝑞2. To use quantum field techniques, [12, 15] must be replaced new 

variables in the MRSE: 
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Ĥ Ψ(r)=E (μ) Ψ(r) →Ψ (r ) ~ q2ρ Ψ(q2)= q2 Ψ(q2)
 
.                                      (2)  

  

When more considerable distances are involved, the wave function must have a 
Gaussian solution; therefore, the Hamiltonian is used with the PUR variables from 

the equation. In a new auxiliary space, the radial part of the SE for the relative 

motion of two-electron QDs with strong electron-electron interactions at a finite 
temperature in three dimensions using the radial Laplacian  

 

𝛥𝑟 =
𝑑2

𝑑𝑟 
2 +

2

𝑟

𝑑

𝑑𝑟
→ 𝛥𝑞 =

𝑑2

𝑑𝑞2 +
𝒟−1

𝑞

𝑑

𝑑𝑞
,                                                               (3) 

 

is defined. Here 𝒟 = 4 + 4ℓ, and now under this transformation, Eq. (1) is 

presented as follows (𝜀0 = ℏ = 𝑐 = 1) 

 

[
𝑑2

𝑑𝑞2 +
4ℓ+3

𝑞

𝑑

𝑑𝑞
+ 4𝜇∗𝑞2 (𝑈𝑡𝑜𝑡𝑎𝑙 − 𝐸(𝜇) )] 𝛹(𝑞2) = 0 →  

 

[
𝑃𝑞

2

2
+ 4𝜇∗𝑞2 (𝑈𝑡𝑜𝑡𝑎𝑙 − 𝐸(𝑟) )] 𝛹(𝑞2) = 0,                                                        (4) 

 

𝑞̂ =
1

√2𝜔
(𝑎̂− + 𝑎̂+),  𝑝̂𝑞 = −𝑖√

𝜔

2
(𝑎̂− − 𝑎̂+),  

  

where 𝑎̂+, 𝑎̂− denote the creation and annihilation operators, respectively. Based 

on the PUR condition, the corresponding canonical variables are derived as Wick 
orderings [14]: 

 

𝑃𝑞
2 = 2𝜔 (1 + ℓ).      𝑞2 =

2

𝜔 
(1 + ℓ).           𝑞4 =

2

𝜔2
 
(1 + ℓ)(3 + 2ℓ),             (5)  

  

The interaction Hamiltonian includes all non-square components (a condition in 

Wick ordering), so we can then discover the renormalization of the bound state 
parameters, including the wave function, which enables us to introduce the PUR 

using the zero approximation and afterward find the eigenvalue of the ground state 

energy  𝜀0(𝐸, 𝑇). Therefore, the following Eq. (4) is constructed based on Eq. (5) 

(for a more thorough explanation, see [12]): 
 

𝜀0(𝐸 , 𝑇) =  
𝑑𝜔

4
− 4𝜇∗𝑞2 (𝑈𝑡𝑜𝑡𝑎𝑙 − 𝐸(𝜇) ) = 0.                                                 (6)  
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The following Eq. (6) may therefore be rewritten: 
  

𝜀0(𝐸 . 𝑇) = 𝑋(𝑇. 𝜔 ) − 𝐸 𝑌(𝑇. 𝜔 ) = 0. 

 
And then, using PUR conditions, we determine 

 

𝜀0(𝐸 , 𝑇) = 0,
𝑑𝜀0(𝐸 ,𝑇)

𝑑𝜔 
= 0.                                                                                 (7)  

  

The pure oscillator frequency 𝜔0 and the energy eigenvalue 𝐸(𝑟)  of strong 

electron-electron interactions in quantum dots may now be determined and using 
zero approximation from Eq. (7) [12]. Thus, using the radial Schrödinger equation 

𝐻̂Ψ(𝑟) = 𝐸(𝜇)Ψ(𝑟) and the steepest descent point, the masses of the particles in 

the strong interactions are determined as follows (𝑖 = 1,2): 
 

𝑀 =
𝜕

𝜕𝜇𝑖
((

𝜇2𝑚1
2+𝜇1𝑚2

2

2𝜇1𝜇2
) +

𝜇

2
+ 𝐸(𝜇)) → 𝑀 = 𝜇1 + 𝜇2 + 𝜇𝐸′(𝜇) + 𝐸(𝜇).       (8) 

 

𝜇𝑖 =
𝜕𝑀

𝜕𝜇𝑖
= 0 ⇒ 𝜇1 = √𝑚1

2 − 2𝜇2𝐸′(𝜇).      𝜇2 = √𝑚2
2 − 2𝜇2𝐸′(𝜇).               (9) 

 

where 𝐸′(𝜇) =
𝜕𝐸(𝜇)

𝜕𝜇
, and 𝜇 =

𝜇1+𝜇2

𝜇1𝜇2
 is the reduced mass of the system, 𝜇𝑖 is the 

constituent mass of particles, and 𝑚𝑖
  is the rest mass of particles. In the next 

paragraph within the suggested technique, the analytical terms for the quanto-

relativistic effect on the strong electron-electron interactions in quantum dots at a 
finite temperature are determined.  
 

3. PARABOLIC-EXPONENTIAL POTENTIAL  

The studies propose that the charged component particles of electron-electron 

interactions at finite temperature, particularly electrons, may also be utilized to 

define the new property of effective masses, providing a plausible approximation 
for describing the features of quantum dots in both strong and weak interactions 

at finite temperature. The electron-electron interactions in a confining potential at 

a finite temperature (𝑇) for quantum dots using the exponential 𝑈 (𝑟 , 𝑇) and 

Coulomb 𝑈 (𝑟) potential models are calculated in this paper based on the 
exponential potential: 

 

𝑈 (𝑟 , 𝑇) = 𝑉0(1 − 𝑒− (𝑎𝑇𝑟)2
 )

 
,                                                                         (10) 
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where parameter 𝑉0 is the depth of the region surrounding a local minimum of 

potential energy i.e. the depth of the potential well. 𝑎𝑇 is the parameter that 

describes and includes temperature relation and the range of the confinement 
potential (CP) and its properties such as frequency. In the very small QDs, a good 

approximation of interaction is a Gaussian type potential when the dimension is 

of the same order as the characteristic length of the variation of CP. Therefore, 

we choose the confining potential to be the spherically symmetric Gaussian 
potential well form: 

𝑈 (𝑟) = −𝐵𝑒− 𝛽2 𝑟2
 
 
, (𝛽2 > 0, 𝐵 > 0, −∞ ≪  𝑟 ≤ +∞), due to facilitating 

comparison of the model with the harmonic potential type and the wave function 

of SE for this type of potential well can present in the form  𝛹(𝑥) =

(
𝜉

𝜋
)𝑑/4𝑒−𝜉2 𝑟2

. Hence, we can set it 𝐵 ≡
𝜇𝑒

∗𝜔0
2

 

 

2𝛽2  for the Gaussian potential well. In 

some other studies, we can set the depth of the potential well  𝐵=γRD , where RD 

the Rydberg and is the unit of energy, γ is constant value depends on the material 
parameters and the certain amount number of electrons in the system (one-

electron QDs for the GaAs quantum dots embedded in (Al0.3 Ga 0.7 As) matrix, 

𝐵=50RD [16, 17]). As an exponential function represents the nonzero temperature 

parameter (and other properties of potential) following the parameter 𝑎(𝑇) = 𝑎𝑇, 
the given function may be changed as follows using  

 

𝑒−𝑎𝑥  
= ∑

(−𝑎𝑥  )𝑛

𝑛!
= 1 − 𝑎𝑥 +

1

2
(𝑎𝑥  )2 + ⋯∞

𝑛=0 , 

 
then the exponential approximation limits of (10) read: 

 

𝑒−(𝑎𝑇𝑟 )
2

= ∑
(−(𝑎𝑇𝑟 )

2)𝑛

𝑛!
∞
𝑛=0 = 1 − (𝑎𝑇𝑟 )

2 + 
1

2
(𝑎𝑇𝑟)4 + ⋯.                         (11) 

 

Therefore, one can find  

 

𝑈 (𝑟, 𝑇) ≅ 𝑉0 ((𝑎𝑇𝑟 )
2 −  

1

2
(𝑎𝑇𝑟)4 + ⋯ ) ≈ 𝑉0(𝑎𝑇𝑟 )

2,                                  (12)                                                  

 

where 𝑎(𝑇) = 0 at absolute zero temperature. In order to solve RSE analytically, 

it is necessary to separate the electron-electron interaction Hamiltonian into two 

different parts, one corresponding to the center of mass and the other to the 

relative motion of the two-electron system. That is the main reason and motivation 
to present and estimate the confining exponential potential to be harmonic type 

potential model for which the total Hamiltonian is separable in the two different 
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semi-coordinates because the Hamiltonian is not separable for the Gaussian type 
potential, in this case with some mathematical presentation one can divide the 

Hamiltonian that should provide an estimated model for realistic quantum dots. 

To simplify the comparison of the presentation in (12) with the parabolic potential 

model, we set  𝑉0 =
𝜔0

2𝜇𝑒
∗

2𝛽 2
=

𝜔0
2𝜇𝑒

∗

2𝑎𝑇
2 , and then 

 

𝑈 (𝑟 , 𝑇) ≅ 𝑉0(𝑎𝑇𝑟 )
2 

≡
1

2
𝜔0

2𝜇𝑒
∗

 
(𝑎𝑇𝑟)2  → 𝜔0

2  ≡
2𝑎𝑇

2𝑉0

𝜇𝑒
∗

 

  

.                               (13) 

 
Therefore, the radial Schrödinger equation has to be changed to solve and 

explain the strong electron-electron interactions at a finite temperature [16, 17]. 

Parameter 𝑎(𝑇) sets a scale for the screening of static charges and the scattering 

of temperature within a quantum dot. It is equivalent to the Debye mass in gauge 
plasma. The effective strong electron-electron interactions at a finite temperature 

of two electrons in QDs are determined according to the assumption that the 

charge images caused by the large difference between primitivity values of 
different layers are of considerable importance in the formalism of the electron 

confinement of QDs. The electron-electron interaction’s effective potential was 

considered with spherically symmetric interactions. Hence, we have examined 

two-body interactions comprising two electrons; Let 𝑚𝑒
∗ , − 𝑒 , are the 

nonrelativistic effective electron mass and charge of the electron. 

The Hamiltonian of strong electron-electron interactions in PUR is described 

for two interacting electrons in QDs. Dineykhan and Efimov [12] developed the 
PUR technique from conception and properties of the quantum field theory. Using 

the PUR the characteristic of two-electron and multi-electron QDs in a magnetic 

field [18] have been calculated. The PUR results agree very well with the results 
obtained by variational numerical methods and analytic methods for these 

potentials. Now, we use the PUR technique to obtain an analytic solution for the 

strong electron-electron quantum dot confined by an exponential potential at a 

finite temperature in a magnetic field under the effective confining parabolic 
potential[19-20]. The Hamiltonian of strong electron-electron interaction is 

separated in the center of mass (𝐻𝑐), and the relative (𝐻𝑟) coordinate and spins 

(𝐻𝑠𝑝𝑖𝑛) with particles velocity (𝑣𝑒
 ) and it is defined as [12,21]: 

 

 𝐻̂Ψ(𝑟) = 𝐸(𝜇𝑒
∗) Ψ(𝑟). 𝐻̂ = 𝐻𝑐 + 𝐻𝑟 + 𝐻𝑠𝑝𝑖𝑛 → 

 

E(μ
e
*)

 
=Ec(nr.mℓ)+Er(nr.mℓ)+Espin(s,mℓ) 

, 
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𝐻̂ = ∑
1

2𝜇𝑒
∗

 

(𝑃𝑖
 +

𝑒

𝑐
𝐴𝑖)

2

 

𝑛
𝑖=1,𝑖≠𝑗 + ∑ 𝑈𝑖𝑗(𝑟𝑖𝑗) + 𝑈(𝑟𝑖𝑗. 𝑇) +𝑛

𝑖=1. 𝑖≠𝑗
𝐻𝑠𝑝𝑖𝑛,         (14) 

  

𝑛 is the number of particles in the QDs, and 𝜇𝑒
∗  indicate the constituent’s quanto-

relativistic effective mass of particles in the strong electron-electron interaction 

states, distinct from the remaining particles effective mass (𝑚𝑒
∗)  and particles 

mass at rest (𝑚𝑒)  in the electron-electron interactions in the quantum dots. Then  

 

𝐻̂ = ∑
1

2𝜇𝑒
∗

 

𝑛
𝑖=1.𝑖≠𝑗 (𝑝𝑖

 +
𝑒

2𝜇𝑒
∗ [𝐵(𝑟𝑖𝑗) × 𝑟𝑖𝑗]) 2 + 𝑉0 𝑎𝑇

2 𝑟𝑖𝑗
2 +

𝑒2

4𝜋𝜀𝑟 𝜀0𝑟𝑖𝑗
+ 𝐻𝑠𝑝𝑖𝑛 ,  

                                                                                                                          (15)                                                     

where CP in quantum dots is characterized by a strong blocking along with one 

of the coordinate axes, and the external magnetic field can be directed along the 

perpendicular plane to the quantum dot, 𝜇𝐵 =
ℏ𝑒

2𝑐𝑚𝑒
 is the Bohr magneton, 𝜀𝑟 , 𝜀0 

are the relative and absolute permittivity, 𝐻𝑠𝑝𝑖𝑛  is the Hamiltonian of the spin 

interactions, 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|, 𝐵(𝑟𝑖𝑗) is the external magnetic field and it is oriented 

in a plane perpendicular to the plane of QDs [22,23], 𝑉0 is the constant parameter 

of CP, 𝐴(𝑟) = 0.5[𝐵(𝑟 ) × 𝑟 ] is the vector potential (𝐴(𝑦) = 0) and low-lying 
quantum excitations are determined by the properties of the confinement potential 

along the remaining two axes, 𝜇𝑒
∗ is the relativistic effective mass of electrons in 

strong electron-electron interactions under the magnetic field in the two electrons 

quantum dots and 𝜔𝐵
  is the cyclotron frequency 𝐵(𝑟𝑖) =

𝜔𝐵
 𝜇𝑒

∗

𝑒
. Now the Jacobi 

(𝐽1. 𝐽2) coordinates (where (𝐽2) is the center of mass of two electrons system) are 

introduced in Fig.1: 

 

 
Fig. 1. The Jacobi coordinates of two electrons system in a quantum dot: 𝐽1 is the vector 

of relative motion and 𝐽2 is the vector of the center of mass. 
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𝑟1 =
𝜇𝑒

∗

𝑀
𝐽1 + 𝐽2, 𝑟2 = −

𝜇𝑒
∗

𝑀
𝐽1 + 𝐽2, 𝑀 =2𝜇𝑒

∗
 , 𝜇 =

𝜇1𝜇2

𝜇1+𝜇2
=

1

2
𝜇𝑒

∗
 ,                        (16)  

 

Here 𝜇 is the reduced mass of electrons in electron-electron interactions. The 

Hamiltonians of the center of mass (specified ‘c’) and the relative motion 

(specified, ‘r’) without spin interactions in these variables read  

 

𝐻𝑐 =
1

2
[𝑃𝑐

 + 𝐴𝑐
 ]2  +

4

𝜇𝑒
∗ ℏ2𝑉0 𝑎𝑇

2 𝜌𝑐
2

 

 
=

𝑃𝑐
2

2
+

ℏ2𝜇𝑒
∗ 

4𝑀 
𝜔𝐵

2 𝜌𝑐
2

 

 
+

ℏ𝜇𝑒
∗ 

2𝑀 
𝜔𝐵

 𝐿𝑐 +

+
4

𝜇𝑒
∗ ℏ2𝑉0 𝑎𝑇

2 𝜌𝑐
2

 

 
                                                                                                                          (17) 

 

𝐻𝑟 =
1

2
[𝑃𝑟

 + 𝐴𝑟
 ]2  +

1

4𝜇𝑒
∗ ℏ2𝑉0 𝑎𝑇

2 𝜌𝑟
2 +

𝑒2

8𝜋𝜀𝑟𝜀0𝜌𝑟
 =

𝑃𝑟
2

2𝜇
+

𝜇𝑒
∗

16
𝜔𝐵

2 𝜌𝑟
2 +

ℏ

2
𝐿𝑟𝜔𝐵

 +

+
1

4𝜇𝑒
∗ ℏ2𝑉0 𝑎𝑇

2 𝜌𝑟
2

 

 
+

𝑒2

8𝜋𝜀𝑟𝜀0𝜌𝑟
                                                                                                      (18) 

  

 𝑞 =
𝐽1

ℏ √2𝜇𝑒
∗ ,     𝜔𝐵

 =
𝑒𝐵

𝑐𝜇𝑒
∗

 

 
,     𝜌𝑞

2
 

 
= 𝑞1

2 + 𝑞2
2,    𝑀 =2𝜇𝑒

∗
     , 𝜇 =

𝜇1𝜇2

𝜇1+𝜇2
=

1

2
𝜇𝑒

∗
  

 

 𝐿 = −𝑖ℏ[𝑟. 𝛻 ] →  𝐿𝑐= − 𝑖ℏ𝛻𝑐 . 𝐿𝑟 = −𝑖ℏ𝛻𝑟, 𝐽1 → 𝜌𝑟
 , 𝐽2 → 𝜌𝑐

 ,                     (19)                 

                                                                                                                          
 

here operators 𝐿  is the angular momentum components in the coordinate system 

of the center of mass (𝐿𝑐) and relative motion (𝐿𝑟) along the 𝑧 axis in the inherent 
coordinate systems. The conservation of angular momentum and the two centers' 

adiabatic approximation leads to components that can be used to determine the 

wave function and eigenenergy of strong electron-electron interactions in QDs. 

Therefore, the total wave function reads [12, 15] 
 

Ψ (𝐽1. 𝐽2 ) = 𝜙 (𝐽1)Φ (𝐽2)𝜒(𝑆𝑖 , 𝑆𝑗) → Ψ (𝐽1. 𝐽2 ) =
𝑒𝑖ℓ𝜑

√𝜋
ℛ(𝐽1. 𝐽2 ),                   (20) 

 

where ℓ is the orbital quantum number, 𝑆𝑖,𝑗  is spin, 𝜙 (𝐽1) is the wave function of 

internal confined electron-electron interactions in QDs, Φ (𝐽2)  is the wave 

function of the center of mass, and 𝜒(𝑆𝑖 , 𝑆𝑗) is the wave function of spin 

interactions. Therefore, the Hamiltonian of the center of mass and relative motion 

based on the non-local spin-spin interaction between electrons quantum dots 𝐻𝑠 =
0, read 
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[
𝑃𝑐

2

2
+

ℏ2𝜇𝑒
∗ 

4𝑀 
𝜔𝐵

2 𝜌𝑐
2

 

 
+

ℏ𝜇𝑒
∗ 

2𝑀 
𝜔𝐵

 𝐿𝑐 +
4ℏ2

𝜇𝑒
∗ 𝑉0 𝑎𝑇

2 𝜌𝑐
2

 

 
− 𝐸𝑐] 𝛷𝑐 = 0,                          (21) 

 

[
𝑃𝑟

2

2𝜇
+

𝜇𝑒
∗

16
𝜔𝐵

2 𝜌𝑟
2 +

ℏ

2
𝐿𝑟𝜔𝐵

 +
ℏ2

4𝜇𝑒
∗ 𝑉0 𝑎𝑇

2 𝜌𝑟
2

 

 

+
𝑒2

8𝜋𝜀𝑟𝜀0𝜌𝑟
 − 𝐸𝑟] 𝜙𝑟 = 0.                 (22) 

 

As we have made aware, it is well-known and important a mathematical skill as 

being able us to solve equations of the Hamiltonian of the center of mass and 
relative motion of electron-electron interactions in QDs, that is taken to determine 

the eigenvalue of the center of mass and the wave function for exponential 

potential at a finite temperature. The eigenvalue of the center of mass   is 

determined: 
 

𝐸𝑐(𝑛𝑟.𝑚ℓ)
 =

ℏ

2
𝜔𝐵

 ((1 +
8𝑉0𝑎𝑇

2

𝜔𝐵
2 𝜇𝑒

∗ )

1

2
(𝑛𝑟 + |𝑚ℓ| + 1) + 𝑚ℓ)

  

,                            (23) 

 

where 𝑛𝑟 = 0.1.2. ⋯, is the radial quantum number and 𝑚ℓ = 0. ±1. ±2. ⋯, is the 

azimuthal quantum number. Then the wave function of the center of mass is 
defined  

𝛷𝑐(𝑛𝑟 .𝑚ℓ) =
2 𝑛𝑟! 𝑎𝑇

 0.5𝑚ℓ

𝜆0√2𝜋(𝑛𝑟+|𝑚ℓ|)!
 (𝐴)0.5𝑚ℓℒ(𝑛𝑟.𝑚ℓ)(𝐴𝑎𝑇

2  )𝑒𝑥𝑝(−𝐴𝑎𝑇
2  ),                 (24)  

 

here ℒ(𝑛𝑟 .𝑚ℓ)(𝐴𝑎𝑇
2 ) is the Laguerre function and set of below notations are used 

to define the elements and properties of the Hamiltonian of the strong electron-

electron system at the zero azimuthal angles: 

 

𝜆 =
𝜆0

√𝑎𝑇
 =

1

√𝑎𝑇
 (

ℏ2 

2𝑉0𝜇𝑒
∗)

1

4
,      𝜂 = (

8𝑉0𝑎𝑇
2

𝜇𝑒
∗ + 𝜔𝐵

2 )

1

2
,   𝐴 =

8𝜌𝑟
2𝑉0

 

ℏ𝜂
,                        (25) 

 

and the Hamiltonian of relative motion of electron-electron interactions in 

quantum dots at finite temperature from (21) reads 
 

[
−1

2
[

𝜕2

𝜕𝜌𝑟
2 +

2|𝑚ℓ|+1

𝜌𝑟
 

𝜕

𝜕𝜌𝑟
 ] +

ℏ2𝜌𝑟
2

4
(

2𝑉0 𝑎𝑇
2

𝜇𝑒
∗ +

𝜔𝐵
2

4
)

1
2

 

 

+
𝑒2

8𝜋𝜀𝑟𝜀0𝜌𝑟
 − 𝐸𝑟] 𝜙𝑟 = 0,       (26) 

 

then after some careful calculation and the pure mathematical analysis of this 
equation, the energy eigenvalue of the relative mass is defined 
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𝐸𝑟(𝑛𝑟.𝑚ℓ)
 =

ℏ

2
(

2𝑉0𝑎𝑇
2

𝜇𝑒
∗ )

 
1

2
[

𝑚ℓ

4

𝜔𝐵
2 𝜇𝑒

∗

𝑉0𝑎𝑇
2 + 𝐴𝑎𝑇

2 (2𝑛𝑟 + |𝑚ℓ| + 1) (1 +
1

8
(

𝜔𝐵
2 𝜇𝑒

∗

𝑉0𝑎𝑇
2 )

 

)

1

2
+

1.5𝛤(|𝑚ℓ|+0.5)

√2𝛤(|𝑚ℓ|+1)

𝜇𝑒
∗  𝑒2

4𝜋𝜀𝑟𝜀0ℏ2 𝜆√𝐴 𝑎𝑇
 (1 +

1

8
(

𝜔𝐵
2 𝜇𝑒

∗

𝑉0𝑎𝑇
2 )

 

)

1

4
]                                                     (27) 

 

A. Quanto-relativistic effects 

Recent advances in hi-tech semiconductors and nano quantum dot 

technologies have made it possible to fabricate nanostructures of different sizes, 

shapes, thermal, optical, and electrical properties at finite temperatures [16] and 

some of the different properties based on the spin-orbit interaction effects and 
excited states [16,17] which is important in the nanoelectronics, micro-laser 

technologies [18], thermoelectric, nano-optoelectronics [19-22]. Quantum dots 

technology has a wide range of applications including in the progress of modern 
technology, information processing, energy physics. When fabricating these 

structures, it is necessary to include quanto-relativistic characteristics, particle’s 

mass correction, relativistic effect on spin-orbital interactions. The most useful 

analysis method and techniques to include quanto-orbital corrections in the 
semiconductor quantum dots are based on the field of quantum field theory, 

symplectic geometry method, and relativistic electrodynamics. The symplectic 

geometry method arising from ideas of QFT has been presented to calculate the 
characteristic of strong electron-electron interactions in quantum dot systems. For 

exponential potential admitting the existence of strong electron-electron 

interaction’s, there is always a transformation of the canonical operators that leads 
to a Gaussian asymptotic form for the wave function at large distances. However, 

the asymptotic manner of the wave functions for large distances does not coincide 

with this manner. Therefore, we have to modify the variables in the original RSE 

so that the MRSE should have solutions with the Gaussian asymptotic behavior. 

In the exponential version of a strong electron-electron potential 𝑈 (𝑟 , 𝑇) =

𝑉0(1 − 𝑒− (𝑎𝑇𝑟 )
2

 )
 
 , MRSE is performed by going over to the 𝑑 + 1 dimension 

spacetime coordinate, where the wave function of the system becomes the 

oscillator one. The existence of such a variation, the 3D dimensional spacetime 
coordinate exponential system can transform into the oscillator one in the 4D 

dimensional spacetime coordinate and it is necessary to represent the canonical 

variables coordinate and momentum of the Hamiltonian through the creation and 
annihilation operators this transformation has been found in Ref. [12,15]. Now, 

by considering renormalization plus the quanto-relativistic behavior, the modified 

equation yielded the interaction Hamiltonian in quantum field theory formalism, 
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the scattering matrix, and the corresponding Feynman diagram [4, 11]. The 
correlation function between the field's associated current and the quantum 

numbers calculates the electron's masses. It is related to Green's function and the 

Feynman functional route integral in quantum mechanics [15]. Consequently, the 
strong electron-electron interaction’s at finite temperature characteristics 

(relativistic effective mass, energy, etc.) are denoted as the correlation function's 

asymptotic limit. Therefore, in this article the eigenvalue energy and the 

relativistic effective electron’s mass (𝜇 
∗) in MF  of two-electron interaction's in 

a quantum dot with zero radial quantum number and zero angular momentum 

number are calculated and the behaviors of the energy spectrum of the two-

electron QD with temperature relation as a function of the magnetic field strength 
are plotted. In the next section, the quanto-relativistic effect and correction to the 

ground state eigenvalue of the center of mass and relative motion Eqs. (14-19) are 

presented and determined. 

 

4. RELATIVISTIC EFFECTIVE MASS OF ELECTRONS  

In Eqs. (23, 27) the electron’s effective mass (𝑚𝑒
∗ )is the mass that it seems to 

have when responding to forces or the mass that it seems to have when interacting 

with other identical particles in a thermal distribution under the external 

field 𝐵(𝑟 ). One of the results from the quanto-relativistic effects on the strong 

electron-electron interactions in QDs is that the movement and interactions of 

electrons in a parabolic-exponential potential field can be very different from their 

motion in a vacuum [7]. The relativistic effective mass is a quantity that is used 

to describe the strong electron-electron interactions by modeling the behavior of 

the relativistic effect of mass. For some purposes and some nanomaterials, the 

effective mass can be considered to be a simple constant of material and the value 

of effective mass depends on the purpose for which it is used, and can vary 

depending on several factors like temperature and quanto-relativistic nature of 

mass in the strong interactions [7] especially in nano quantum dots. For electrons 

or electron holes in a solid, the effective mass is usually stated in units of the, 

𝑚𝑒 
 (𝑚𝑒

 = 0.5𝑀𝑒𝑉). In these units, it is usually in the range 0.01 to 10, but can 

also be lower or higher—for example, reaching 1,000 in exotic heavy fermion 

materials, or anywhere from zero to infinity (depending on definition) in 

graphene. As it simplifies the more general band theory, the electronic effective 

mass can be seen as an important basic parameter that influences measurable 

properties of a solid, including everything from the efficiency of a solar cell to the 
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speed of an integrated circuit. Therefore, based on Eq. (9) quanto-relativistic 

effect on the effective mass of electrons in a quantum dot is defined [12, 15] 

 

𝜇𝑒
∗ = √𝑚𝑒

∗2 − 2𝜇2𝐸′(𝜇, 𝑇).                                                                             (28) 

 

as we mentioned above 𝐸′(𝜇, 𝑇) =
𝜕𝐸(𝜇,𝑇)

𝜕𝜇
 , and  𝐸(𝜇, 𝑇)is the eigenenergy of the 

total Hamiltonian in the projective unitary representation and the 𝜇 parameter 

represents the boundary system's component mass (for more details see [12]), and 
then, the relativistic correction to the component’s effective mass in the strong 

electron-electron interactions in Eqs. (23, 27) can be included. Thus the 

eigenvalues of the center of mass and the relative motion at a finite temperature 
and relativistic effect on the effective mass can be replaced. In this research, we 

used the typical quantum dots for GaAs and then the quanto-relativistic to the 

ground state energy at a finite temperature with the effective mass 𝑚𝑒
∗ =

0.035𝑀𝑒𝑉 and relativistic effective mass 𝜇𝑒
∗  for GaAs are plotted in Fig. 2. 

 

 

Fig. 2. The energy of the QDs in units of ℏ𝜔0
 , for GaAs is a function of 

B
/

0
 (magnetic     

            field strength)  at various  temperature  values:    

            𝑇 = −270𝐶 (3𝐾), −50𝐶 (223𝐾), 10𝐶 (283𝐾), 100𝐶 (373𝐾). 
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Fig. 2 shows the energy of QDs, at various temperature values. This relativistic 

correction on energy-temperature behavior is again due to dependence of the 

physical material parameters 𝜀  and  𝑚𝑒
∗ (effective mass of electrons) which 

directly depends on relativistic behavior and the temperature value of the quantum 

dot. Based on theoretical calculation and curves in Fig. 2, the behavior of the 

energy values of QD as the temperature decreases are observed. The curves are 

plotted with the quantum numbers 𝑛𝑟 = 𝑚ℓ = 0, and various temperatures. The 

effective mass of electrons  𝑚𝑒
∗ = 0.035𝑀𝑒𝑉 and in this theoretical article based 

on the given parameters and constant, the relativistic effective mass has a range 

0.045 ≤ 𝜇𝑒
∗ ≤ 0.075 eV, which depends on the pressure, thickness, coupling 

constant, etc. The results quanto-relativistic corrections to the strong electron-

electron interactions quantum dots with the quantum numbers 𝑛𝑟 = 𝑚ℓ = 0, at a 

finite temperature [23-25] in the magnetic field are shown, the behaviors of the 

relativistic effects on electron’s effective mass. The theoretical results obtained 

can be compared with values wherever available data and the investigation shows 

a good agreement with experimental and theoretical results [24]. The combined 

effects of temperature on the energy levels of a  QD under a magnetic field had 

been studied and described. The exact relativistic effect on mass had been used to 

solve QD Hamiltonian and to obtain the eigenenergy is the main subject of this 

article. Within the proposed method the analytical expressions for the energy 

levels of the QDs are obtained. The CP interaction and the relativistic correction 

effect are treated exactly and from the analysis of the eigenenergy spectrum, it 

follows that the action and reaction between the strong electron-electron 

interaction and MF is an important ingredient for the prediction of the behavior 

of the ground phase transitions. The results presented here will be useful for the 

analysis of the electron properties and characteristics in two-electron QDs and 

will allow us to conclude a deviation of the real confining potential from the 

relativistic corrections to the mass, and also exact conditions for spin singlet-

triplet transitions due to the electron-electron interaction in a QFT and QM can 

be determined perfectly. 

 

A. Correction to the spin singlet-triplet transition energy  

Studies of strong electron-electron interaction states intensified with the 

construction and formation of quantum systems confined in spatial dimensions 
known as artificial-exotic atoms, superatoms, or QDs. Recently there has been 
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great interest in these exotic systems which are the subjects of popular research 
due to their physical properties for quantum technologies, quantum computers, 

solar cells, quantum dot lasers, electrically tunable spin qubits, electrical 

manipulation of individual spins, and transistors, etc. [26-28]. “In 1994 Wagner 
et al. predicted a transition for the ground state energy from the spin-singlet to the 

spin-triplet state as a function of the magnetic field [29].” After then, numerical 

diagonalization of the Hamiltonian matrix, variational approach, Hartree-Fock, 

and some other methods and techniques are used to determine and calculate the 
energy levels of QDs. In this article, the PUR method has been presented to 

determine the eigenenergy levels of QDs based on describing the relationship 

between temperature and relativistic corrections to the effective mass of two-
electron quantum dots in MF. According to the previous paragraphs, we can 

define and determine spin eigenenergy according to the strong electron-electron 

interaction in QDs. The benefit of these corrections and correlation effects of the 
interacting electrons that are confined in a QD can be shown in the theoretical 

way of the relativistic effect of the spin-orbit coupling that mixes states with 

different multiplicities, e.g. singlet-triplet spin transition As we know the quantum 

dots can be a good motive to be a new candidate for future quantum processors 
and quantum technologies, because of MF effect on the spin transitions and 

adaptation. Hence, one of the major advantages of the use of the relativistic 

correction to the mass in the total Hamiltonian is the possibility to determine and 
consistently yield more accurate results of the spin singlet-triplet transition 

characteristic in QDs. The total wave function of two electrons QDs is a product 

of spin and spatial terms. The total parity of partial terms is 𝑃 = 𝑖2𝑚ℓ, and has an 

even parity 𝑃+ for even 𝑚ℓ and 𝑃− for an odd 𝑚ℓ. The total spin parity terms 

based on the total partial value must be  a singlet state 𝑆 = 0  if 𝑃+ (symmetry 

state) and a triplet 𝑆 = 1  if 𝑃− (antisymmetry state). Hence the total spin 

interactions can be presented by the relation 𝑆 = 0.5|1 − 𝑖2𝑚ℓ | [29]. 

We can define the separation form of the total spin Hamiltonian of Eq. (14) in 

the form: 𝐻𝑠𝑝𝑖𝑛 = 𝐻𝐿𝑆 + 𝐻𝑠𝑖𝑗
, where 𝐻𝐿𝑆  is the Hamiltonian of the spin-orbit 

interactions and 𝐻𝑠𝑖𝑗
 is an additional Hamiltonian spin interaction with the 

eigenenergy named after Zeeman energy which reads 𝐻𝑠𝑖𝑗
= 𝑔𝜇𝐵(𝐵 ∙ 𝜎) =

𝑔𝜇𝐵(𝑆𝑖 + 𝑆𝑗), where the vector of Pauli matrices  𝜎 = (𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) is the 

electron spin operator, 𝑆𝑖,𝑗  is the electron spin [30,31], 𝜇𝐵is the  Bohr magneton, 

𝑔 (𝑔 factor) is the phenomenological parameter [32]. The Zeeman splitting of 

energy levels with different spins in a  magnetic field is an important parameter 

in the growing field of spin-based quantum technologies. Hence, we can define 
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Zeeman’s eigenenergy based on the previous descriptions. The Pauli principle 

gives us the presentation of the Zeeman’s eigenenergy according to the total wave 

function that must be antisymmetric with respect to canonical transformation 

leads to the exact spin behavior of the magnetic quantum number corresponding 

to the relative motion in singlet and triplet states. We do not intend to investigate 

the effects of spin interactions in this article, so it's worth mentioning that how the 

relativistic correction of mass and temperature relation can affect the results of 

the total eigenenergy of a quantum dot [29]. From Eq. (26) and 𝐻𝑠𝑖𝑗
= 𝑔𝜇𝐵(𝑆𝑖 +

𝑆𝑗), one can determine the eigenvalue 𝐸𝑠(𝑠,𝑚ℓ)
 
of the Zeeman effect with the 

relativistic correction on mass reads: 

 

𝐸𝑠(𝑠,𝑚ℓ)
 =

(1−𝑖2𝑚ℓ)

4𝑚𝑒
ℏ𝑔𝜇𝑒

∗𝜔𝐵
 = (1−𝑖2𝑚ℓ)

4𝑚𝑒
ℏ𝑔𝜔𝐵

 (𝑚𝑒
∗2 − 2𝜇2𝐸′(𝜇, 𝑇))

1
2

  

.        (29) 

 

From Eqs. (23, 27, 29) we can investigate different ground state energy as a 

function of the relativistic effective mass 𝜇𝑒
∗ = (𝑚𝑒

∗2 − 2𝜇2𝐸′(𝜇, 𝑇))
1
2 of the 

electron, 𝜆 =
1

√𝑎𝑇
 (

ℏ2 

2𝑉0𝜇𝑒
∗)

1

4
, 𝑎𝑇

 , 𝜔𝐵
 , 𝜔0

  ≡ (
2𝑎𝑇

2𝑉0

𝜇𝑒
∗ )

1

2

 

 

. Based on the Eqs. (23, 27, 

30) we can realize that the ground state energy of strong electron-electron 

interaction (the Coulomb potential) two-electron in quantum dot leads to different 

ground state arrangement 𝑚ℓ = −1,-2,-3, ..., unlike the ground state level in the 

absence of strong electron-electron interaction (Coulomb potential) 𝑚ℓ = 0. 

Therefore, one can define the different arrangement of energy levels in a particular 

order of singlet and triplet states (the singlet-triplet transition) with the main 

condition 𝑚ℓ ≤ 0, [29] and we defined the relativistic effective mass correction 

at finite temperature to the spin singlet-triplet transition energies. Therefore, we 

showed in Eqs. (29) and (27) that the relativistic effect on mass 𝜇𝑒
∗  and finite 

temperature how to affect the transition energy and the total eigenenergy of 

the quantum dots in the different states of 𝑚ℓ against 𝜔𝐵
  MF frequency for 

strong electron-electron interacting in the ground state and other higher states. 
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5. CONCLUSION  

The Schrödinger equation's strong electron-electron interaction at a finite 

temperature in the external magnetic field solution for GaAs QDs with a 

parabolic-exponential and Coulomb potentials is determined in this paper 

utilizing the projective unitary representation. In detail, the theory of quantum dot 

Hamiltonian including the relativistic correction on mass and temperature 

dependence of the effective mass of GaAs QD material is described. These 

temperature-dependent and mass parameters should be included in the energy 

spectrum Eq. (23). For quantum dots made of GaAs the dependency of 

temperature and relativistic mass are given in Eq. (27). We characterized the 

temperature dependency of strong electron-electron interaction with the quanto-

relativistic corrections to the mass and energy. In strong electron-electron 

interactions, the relativistic mass-temperature connection was developed. At zero 

and finite temperatures, we have characterized the electron's effective mass. 

Temperature dependency was found by treating nonzero temperature as an 

exponential function and modifying parameters like the Debye mass. The findings 

establish that strong electron-electron interaction in the two-electron QDs with 

quanto-relativistic corrections and temperature effect may represent a novel 

property of hidden characteristics of semiconductors. According to the findings, 

the study's theoretical results are expected to open new avenues for new 

theoretical knowledge of nanotechnology due to the work's outstanding and 

similar results to previous theoretical or experimental studies. Perspectives of 

quantum field theory and quantum mechanics in SQDs have tremendous scope in 

nanoelectronics, thermoelectric, and nano-optoelectronics which may 

revolutionize technology. However, a correct understanding of the energy of 

quantum dots is necessary for it, especially the quantum confinement energy.  

This article suggests the relativistic effect on the effective mass of electrons in 

quantum dots which is determined and defined to be greater than what is available 

in the standard kinds of literature and articles. Hence, we suggest that careful 

experiments on quantum dots need to confirm and reveal it. The growing interest 

in the optoelectrical properties and characteristics of QDs is causing great 

research interest and excitement in the Hitech generation in the fields of 

photonics, microelectronics, and optoelectronics. Hence, the theoretical data 

gained may be used in a future study, potentially opening up new possibilities for 

identifying unique characteristics of electron-electron and electron-hole systems.   
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