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Abstract: In this paper, the numerical design and simulate a biosensor to detect tumors 

and cancerous tissues by using metamaterial structures in the microwave regime are 

presented. The presented structure consists of a microstrip transmission line and a split 

ring resonator (SRR) that form a bandpass filter and has a unique resonance frequency. 

Given that cancerous tissues have larger volumes of water than healthy tissues. As a 

result, they have a higher dielectric coefficient and conductivity which use for healthy 

tissues detection. By placing biological samples on SRR, its dielectric constant changes, 

therefore, the resonance frequency of the system changes. We can measure the types of 
biological tissues by measuring these changes. We used the Debye model to simulate 

the muscles. Also, the benefits of this biosensor are easy to use and operation, but they 

have lower sensitivity than terahertz biosensors. The minimum resolution for samples 

under test in this biosensor is 10 MHz. 

 
Keywords: Biosensor, Microstrip Line, Split Ring Resonator, Cancerous Tissues, Debye 

Model. 

 

1. INTRODUCTION 

More recently, the metamaterials have been considered by several research 
groups due to their interesting optical properties including negative the 

dielectric constant (  and the magnetic permeability (  [1], as well as their 

application such as microsphere sensor [1], second harmonic generation [2], 

plasmonics sensor [3-7], biosensors [8-12], refractive and optical sensors [13-

30], and etc [31-41]. One of the most critical features of this material is the 

negative refractive index as well as the guidance of electromagnetic waves in 
the desired direction [42-56]. It is worth mentioning that two dimensional 

material have been received much attention from research groups [57-58]. 

Considering the extremely high sensitivity of metamaterials to electromagnetic 
waves, they are also used as biological sensors. Conventional biological sensors 
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(such as those works based on electromechanical transfer, fluorescence, 
nanomaterials and surface plasma resonance) often suffer from their very 

sophisticated equipment. In recent years, researchers have proposed the use of 

metamaterials for high sensitive to chemicals, biochemistry, and biological 
analytes. However, many of these structures suffer from their complicated 

fabrication and their cost. 

 In this paper, we design and simulate a low-cost and straightforward biosensor 

in the microwave ranges. The proposed sensor is made up of a macro strip line 
and a split ring resonator (SRR). The SRR can be considered as a simple LC 

circuit, which has a specific resonance frequency, which depends on the 

dimensions and the dielectric constant ( . We also know that cancerous tissues 

and tumors have a higher content of water than healthy tissues. Hence, they 

have higher dielectric constant as well as conductivity. As a result, we can use 
these changes to detect these tissues from each other. By placing the tissues on 

the SRRs, the dielectric constant of the medium changes and the resonant 

frequency is then shifted. By measuring the rate of the shift, one can recognize 
the tissues and their types. Because the dielectric constant and the conductivity 

of biological tissues vary with frequency, we have used the Debye model to 

account for these effects. 

2. THE MODEL OF THE PROPOSED BIOSENSOR 

    The three-dimensional schematic of the proposed biosensor structure is 

shown in Fig. 1. As can be seen, this sensor is composed of a microstrip line 
and an SRR. Electric waves are emitted from the input port and measured at the 

output port. SR can be considered equivalent to a simple LC circuit.  

    Fig. 2 shows an example of SRR whose resonant frequency is obtained by 
equation 1-2.  
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Fig. 1 The overall shape of the proposed biosensor 

 

 
Fig. 2 An example of SRR  
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   In the Fig. 3, the exact dimensions of sensor are considered that are L=7.3 
mm, h=1 mm, g=0.2 mm, R1=2 mm, and R2=2.5 mm. 

 

 
Fig. 3 Dimensions of the sensor 

 

3. REQUIRED INFORMATION FOR SIMULATION 

    As mentioned in the earlier section, in this work, the Debye model is utilized; 

hence, in this section examines the essential information for simulation [59,60]. 

As we have mentioned, for the detection of tissues from each other, we use here 

the constant dielectric and conductivity changes in normal and malignant 
tissues. For modeling of biological tissues and simulate them, we use the Debye 

model whose relations are shown in Equations 3-5. 
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    The parameters extracted from the tissues of the body outside for healthy, 

cirrhotic, malignant, and tumor specimens are shown in the following table [61]. 
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Table I. the parameters of ex vivo 

Materials  [ps]    
Normal 11.55 5.32 49.55 0.25 
Malignant 10.82 4.60 58.86 0.21 

Cirrhotic 10.45 6.09 52.9 0.74 

Tumor 15 18.8 46.8 0.803 

 
    The Fig. 4 illustrates the results of simulation of Debye model for relative 

permittivity (top charts) and effective conductivity (bottom charts) as a function 

of frequency for all the tissues including of normal, malignant, cirrhotic and 

tumor, respectively, in the frequency range between 1 to 20 GHz. 
 

 
Fig. 4. Effective conductivity and relative permittivity VS frequency in the GHz regime 

 

    We used the reflection and transmission parameters to detect of tissues, 

which is obtained as T=|S21|
2and R=|S11|

2. The method used here for the process 

of simulating and solving differential equations is the finite element method 

(FEM) [62]. The FEM is an accurate numerical solution method based on 

meshed structures, and then equations and boundary conditions are solved in 

each mesh. This method is more precise than other methods and is well adapted 

to non-square structures. Also, the equations we want to solve using this method 

are the following equations: 
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Here, E is the electric field, µr and  are the relative permeability tensor and 

the angular frequency, respectively. The  is the conductivity tensor, ε0 is the 

permittivity of the vacuum, εr is the relative permittivity tensor, and finally, k0 is 

the free space wave number. 

4. RESULTS AND DISCUSSION 

    As mentioned in section 1, the proposed sensor has a SRR structure [63], and 

acts as a band-pass filter, which has a resonant frequency. In Fig. 6, the 

reflection and transmission diagrams of the sensor are shown for a case in which 
there is no sample on it. In this case, the resonance frequency of the system is 

15.3 GHz. 

 

 
Fig. 6: The frequency response of the proposed biosensor 
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Also, in Fig. 7, we can see the distribution of the electric field at the resonance 

frequency. At this frequency, we will have the maximum transmission of 

electrical waves. 

 
Fig. 7: Distribution of the electric field at a resonance frequency of 15.3 GHz  

As mentioned in the previous section, if we put the samples, we show on the 

SRR, the dielectric constant of the medium is changed, and as a result, the 

resonant frequency of the system is shifted. In Fig. 8, these changes are shown 
for healthy, cirrhotic, malignant, and tumor tissues. 

The changes in the resonance frequency of the system in various modes are 

respectively, 15.3 (no sample), 16.65 (standard sample), 16.6 (Cirrhotic), 16.59 
(Malignant), and 16.7 (Tumor). As can be mentioned above, each of the tissues 

has a specific resonance frequency, which is due to their dielectric constant. 

According to the results, at least the resolution for the separation between the 

samples is about 10 MHz, which is related to the cirrhotic and malignant 
tissues. The maximum value is 110 MHz, which is related to malignant and 

tumor. In future the sensing behavior in our works is considered [64-66]. 

For future works, one-two dimensional can be considered [67-79]. 
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Fig. 8 The frequency response for all the tissues 

 5. CONCLUSION 

In this paper, we simulated biosensor based on metamaterials for cancerous 

tissues detection in the microwave regime. Since biological tissues have certain 
dielectric constant and conductivity, we used this issue to identify them. In the 

absence of samples, the sensor has a specific resonance frequency, which, by 

placing the sample on it, will shift the frequency. The minimum and maximum 
resolution for the tested samples is 10 and 110 MHz. The advantages of this 

sensor include smooth operation and manufacturing. 
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