[5] F. Wu, et al., Investigation of the Spectrum of Resonance Fluorescence Induced by a Monochromatic Field, Phys. Rev. Lett. 35 (1975) 1426. Available: https://doi.org/10.1103/PhysRevLett.35.1426.
[6] C. H. R. Ooi, E. A. Sete, W. M. Liu, Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity, Phys. Rev. A 92 (2015) 063847. Available: https://doi.org/10.1103/PhysRevA.92.063847.
[7] W. Vogel, D.G. Welsch, Quantum Optics, WILEY-VCH, Germany, 2006.
[8] M.O. Scully, S.M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 2008.
[9] S. Wen, R. Zhang, S. Hu, L. Zhang, L. Liu, Improved fluorescence properties of core–sheath electrospun nanofibers sensitized by silver nanoparticles, Opt. Mater. 47 (2015) 263-269. Available:
https://doi.org/10.1016/j.optmat.2015.05.038.
[10] F. Carreno, S. M. Razavi, M. A. Anton, Resonance fluorescence and phase-dependent spectra of a singly charged š¯‘›-doped quantum dot in the Voigt geometry, Phys. Rev. B 95 (2017) 195310. Available:
https://doi.org/10.1103/PhysRevB.95.195310.
[12] J. Enders, et.al., Nuclear resonance fluorescence experiments on 204,206,207,208Pb up to 6.75 MeV, Nuclear Physics A 724 (2003) 243–273. Available: doi:10.1016/S0375-9474(03)01554-9.
[13] E. Scholl, et. al., Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability, Nano Lett. 19 (2019) 2404–2410. Available:
https://doi.org/10.1021/acs.nanolett.8b05132; S. M. Barnett, et. Al., Decay of excited atoms in absorbing dielectrics, J. Phys. B 29 (1996) 3763. Available: DOI 10.1088/0953-4075/29/16/019.
[14] J. R. Lakowics, Plasmonics in Biology and Plasmon-Controlled Fluorescence, Plasmonics 1(2006) 5-33. Available: doi: 10.1007/s11468-005-9002-3.
[15] D. Wigger, M. Weiß, M. Lienhart, K. Müller, J. J. Finley, T. Kuhn, H. J. Krenner, P. Machnikowski, Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot, Phys. Rev. Research 3 (2021) 033197. Available: https://doi.org/10.1103/PhysRevResearch.3.033197.
[16] S. Kahmann, A. Shulga, M. A. Loi, Quantum Dot Light-Emitting Transistors—Powerful Research Tools and Their Future Applications, Advanced Functional Materials 30 (2020) 1904174. Available:
https://doi.org/10.1002/adfm.201904174.
[17] E. Parto, G. Rezaei, A. Mohammadi Eslami, T. Jalali, Finite difference time domain simulation of arbitrary shapes quantum dots, Eur. Phys. J. B 92 (2019) 246. Available:
https://doi.org/10.1140/epjb/e2019-100410-9.
[18] B. Vaseghi, M. Sadri, G. Rezaei, A. Gharaati, Optical rectification and third harmonic generation of spherical quantum dots: Controlling via external factors, Physica B 457 (2015) 212-217. Available:
https://doi.org/10.1016/j.physb.2014.10.020.
[19] C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. Le Gall, M. Atatüre, Quadrature squeezed photons from a two-level system, Nature 525 (2015) 222-225. Available:
https://doi.org/10.1038/nature14868.
[20] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B 46 (1992) 15578. Available:
https://doi.org/10.1103/PhysRevB.46.15578.
[21] G. Singh Selopal, H. Zhao, Z. M. Wang, F. Rosei, Core/Shell Quantum Dots Solar Cells, Advanced Functional Materials 30 (2020) 1908762. Available:
https://doi.org/10.1002/adfm.201908762.
[22] H. N. Gopalakrishna, R. Baruah, C. Hünecke, V. Korolev, M. Thümmler, A. Croy, M. Richter, F. Yahyaei, R. Hollinger, V. Shumakova, I. Uschmann, H. Marschner, M. Zürch, C. Reichardt, A. Undisz, J. Dellith, A. Pugžlys, A. Baltuška, C. Spielmann, U. Peschel, S. Gräfe, M. Wächtler, and D. Kartashov, Tracing spatial confinement in semiconductor quantum dots by high-order harmonic generation, Phys. Rev. Research 5 (2023) 013128. Available:
https://doi.org/10.1103/PhysRevResearch.5.013128.
[24] A. Jahanshir, Quanto-Relativistic Background of Strong Electron-Electron Interactions in Quantum Dots under the Magnetic Field JOPN 6 (2021) 1-24. Available: DOI: 10.30495/JOPN.2021.28742.1231
[25] H. Bahramiyan, S. Bagheri, Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect, JOPN 3 (2018) 79-100.
Available: https://jopn.marvdasht.iau.ir/article_3047_0a2d460925ad6686daf5ac62c9082227.pdf
[26] S. M. Razavi, B. Vaseghi, Terahertz resonance fluorescence and squeezing in quantum dots: Effects of external electric field and dimension, Optik 158 (2018) 460. Available:
https://doi.org/10.1016/j.ijleo.2017.12.180.