[1] He, Z., et al, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics 6(9), (2012) 593-597.
Available: https://doi.org/10.1038/nphoton.2012.190
[2] Dou, L., et al, Tandem polymer solar cells featuring a spectrally matched low-band gap polymer, Nat. Photonics 6(3), (2012) 180-185.
Available: https://doi.org/10.1038/nphoton.2011.356
[3] Li, N., et al, Towards 15 % energy conversion efficiency: A systematic study of the solution-processed organic tandem solar cells based on commercially available materials, Energy & Environmental Science.6 (2013) 3407-3413
Available: https://doi.org/10.1039/C3EE42307G
[4]G. Dennler, M.C.Scharber, C.J.Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater. 21 (2009) 1323-1338.
Available:https://doi.org/10.1002/adma.200801283
[5] M. Hasani , R. Chegell . Electronic and optical properties of the Graphene and Boron Nitride nanoribbons in presence of the electric field. Journal of Optoelectrical Nano Structuers.5.2 (2020) 49-64.
[6] S. Rafiquea, S. M. Abdullaha, K. Sulaimana, M. Iwamotob, Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement, Renewable and Sustainable Energy Reviews.84 (2018) 43–53.
Available:https://doi.org/10.1016/j.rser.2017.12.008
[7] F. A. Roghabadi, N. Ahmadi, V. Ahmadi, A. D. Carlo, K. O. Aghmiuni, A. S. Tehrani, F. S. Ghoreishi, M. Payandeh, N. M. R. Fumanid, Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties, Solar Energy 173 (2018) 407–424.
Available:https://doi.org/10.1016/j.solener.2018.07.058
[8] W. Ma, J. Y. Kim, K. Lee, and A. J. Heeger, Effect of the molecular weight of poly (3-hexylthiophene) on the morphology and performance of polymer bulk heteojunction solar cells, Macromol. Rapid Commun. 28, (2007) 1776-1780.
Available:https://doi.org/10.1002/marc.200700280
[9] G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene bulk-heterojunction solar cells, Adv. Mater. 21, (2009) 1323-1338.
Available: https://doi.org/10.1002/adma.200801283
[10] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, J.V. Manca, On the origin of the open-circuit voltage of polymer- fullerene solar cells, Nat. Mater. 8 (2009) 904-909.
Available:https://doi.org/10.1038/nmat2548
[11] A. Foertig, A. Baumann, D. Rauh, V. Dyakonov, C. Deibel, Charge carrier concentration and temperature dependent recombination in polymer-fullerene solar cells, Appl.Phys. Lett. 95 (2009) 052104.
Available:https://doi.org/10.1063/1.3202389
[12] G. Garcia-Belmonte, P.P.Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy, Sol. Energy Mater. Sol. Cells 94 (2010) 366-375.
Available:https://doi.org/10.1016/j.solmat.2009.10.015
[13] A. Spies, M. List, T. Sarkar, and U.Würfel, On the Impact of Contact Selectivity and Charge Transport on the Open-Circuit Voltage of Organic Solar Cells, Adv. Energy Mater,( 2016) 1601750.
Available:https://doi.org/10.1002/aenm.201601750
[14] N. Sadoogi, A. Rostami, B. Faridpak, and M. Farrokhifar, Performance analysis of organic solar cells: Opto-electrical modeling and simulation, Engineering Science and Technology, an International Journal.24 (2021) 229–235.
Available:https://doi.org/10.1016/j.jestch.2020.08.006
[15] S. I. Uddin, M. Tahir, F. Aziz, M. R. Sarker, F. Muhammad, D. N. Khan, and S. H. M. Ali, Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer, Energies.13 (2020), 5915.
Available:https://doi.org/10.3390/en13225915
[16] C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, Z. He, Modeling and simulation of bulk heterojunction polymer solar cells,Solar Energy Materials & Solar Cells 127 (2014) 67–86.
Available:https://doi.org/10.1016/j.solmat.2014.04.009
[17] L. Jhamba, D. Wamwangi, Z. Chiguvare, Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM:P3HT, Optical and Quantum Electronics.52 (2020) 245.
Available:https://doi.org/10.1007/s11082-020-02362-0
[18] W. Yang, Y. Yao, and C.Q. Wu, Mechanisms of device degradation in organic solar cells:Influence of charge injection at the metal/organic contacts, Organic Electronics.14 (2013) 1992–2000.
Available:https://doi.org/10.1016/j.orgel.2013.04.036
[19] C. R. Singh , C. Li , C. J. Mueller , S. Hüttner, and M. Thelakkat, Influence of Electron Extracting Interface Layers in Organic Bulk-Heterojunction Solar Cells, Adv. Mater. Interfaces.3 (2016) 1500422.
Available:https://doi.org/10.1002/admi.201500422
[20] A.H. Fallahpour, A.Gagliardi, F.Santoni, D. Gentilini, A.Zampetti, M.AufderMaur, and A.Di Carlo, Modeling and simulation of energetically disordered organic solar cells, J.Appl. Phys. 116 (2014) 184502.
Available:https://doi.org/10.1063/1.4901065
[21] M. Erray, M. Hanine, E. M. Boufounas, and A. E. Amrani, Combined effects of carriers charge mobility and electrodes work function on the performances of polymer/fullerene P3HT:PCBM based organic photovoltaic solar cell, Eur. Phys. J. Appl. Phys. 82 (2018) 30201.
Available:https://doi.org/10.1051/epjap/2018180070
[22] I. Hwang and N. C. Greenham, Modeling photocurrent transients in organic solar cells, Nanotechnology 19 (2008) 424012.
Available:https://doi 10.1088/0957-4484/19/42/424012
[23] W. Tress, K. Leo, and M. Riede, Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study, Phys. Rev. B 85 (2012) 155201.
Available:https://doi.org/10.1103/PhysRevB.85.155201
[24] G. Dennler, K. Forberich, M.C. Scharber, C.J. Brabec, I. Tomis, K. Hingerl et al., Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells, J. Apply. Phys. 102 (2007) 054516.
Available:https://doi.org/10.1063/1.2777724
[25] R. Hausermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, and B. Ruhstaller, Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis, J. Apply. Phys. 106 (2009) 104507.
Available:https://doi.org/10.1063/1.3259367
[26] A. Petersen, T. Kirchartz, and T.A. Wagner, Charge extraction and photocurrent in organic bulk hetero-junction solar cells, Phys. Rev. B 85 (2012) 045208.
Available: https://doi.org/10.1103/PhysRevB.85.045208
[27] J.T. Shieh, C.H. Liu, H.F. Meng, S.R. Tseng, Y.C. Chao, and S.F. Horng, The effect of carrier mobility in organic solar cells, J. Appl. Phys. 107 (2010) 084503.
Available:https://doi.org/10.1063/1.3327210
[28] A.S. Lin and J.D.Phillips, Drift-diffusion modeling for impurity photo-voltaic devices, IEEE Trans. Electron Devices 56 (2009) 3168-3174.
Available: https://doi.org/10.1109/TED.2009.2032741
[29] K.Wee Shing, M. Pant, Y.A. Akimov, G. Wei Peng, and L. Yuning, Three-dimensional optoelectronic model for organic bulk heterojunction solar cells, IEEE J. Photovolt. 1 (2011) 84-92.
Available:https://doi.org/10.1109/JPHOTOV.2011.2163620
[30] J.D. Kotlarski, P.W.M. Blom, L.J.A. Koster, M. Lenes, and L.H.Slooff, Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 103 (2008) 084502.
Available:https://doi.org/10.1063/1.2905243
[31] W. Vervisch, S. Biondo, G. Riviere, D. Duche, L. Escoubas, P. Torchio et al., Optical-electrical simulation of organic solar cells: Excitonic modeling parameter influence on electrical characteristics, Appl. Phys. Lett. 98 (2011) 253306.
Available:https://doi.org/10.1063/1.3582926
[32] O. J. Sandberg, M. Nyman, and R. Osterbacka, Effect of contacts in organic bulk hetero-junction solar cells, Phys. Rev. Appl. 1 (2014) 024003.
Available:https://doi.org/10.1103/PhysRevApplied.1.024003
[33] R. Yahyazadeh, Z. Hashempour, Effect of Hyrostatic pressure on optical Absorption coeffivient of InGaN/GaN of Multiple Quantum well solar cells, Journal of optoelectronical Nano structures,6.2 (2021) 1-22
[34] M. Saleheen, S. M. Arnab, and M. Z. Kabir, Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells, Energies.9 (2016) 412.
Available: https://doi.org/10.3390/en9060412
[35]A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, S-shaped current-voltage characteristics of organic solar devices, Phys. Rev. B. 82 (2010) 115306.
Available:https://doi.org/10.1103/PhysRevB.82.115306
[36] A.H. Fallahpour, A. Gagliardi, D. Gentilini, A. Zampetti, F.Santoni, M. Auf der maur, A. Di Carlo, Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells, J. Comput. Electron.13 (2014) 933-942.
Available:https://doi.org/10.1007/s10825-014-0611-y
[37] F. Monestier, J.J. Simon, P. Torchio, L.Escoubas, F. Flory, S. Bailly et al., Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend, Sol. Energy Mater. Sol. Cells.91(2007) 405-410 .
Available:https://doi.org/10.1016/j.solmat.2006.10.019
[38] T. Kirchartz, J. Mattheis, and U. Rau, Detailed balance theory of excitonic and bulk heterojunction solar cells,Phys. Rev. B.78 (2008) 235320.
Available:https://doi.org/10.1103/PhysRevB.78.235320
[39] G. F. A. Dibb, T. Kirchartz, D. Credgington, J. R. Durrant, and J. Nelson ,Analysis of the Relationship between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells,J. Phys. Chem. Lett. 2 (2011) 2407.
Available:https://doi.org/10.1021/jz201104d
[40] S. R. Cowan, A. Roy, and A. J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells,Phys. Rev. B.82 (2010) 245207.
Available:https://doi.org/10.1103/PhysRevB.82.245207
[41] A.V. Nenashev, S.D. Baranovskii, M. Wiemer, F. Jansson, R. Osterbacka, A.V. Dvurechenskii et al., Theory of exciton dissociation at the interface between a conjugated polymer and an electron acceptor, Phys. Rev. B.84 (2011) 035210.
Available:https://doi.org/10.1103/PhysRevB.84.035210
[42] M. Wiemer, A.V. Nenashev, F. Jansson, and S.D. Baranovskii,on the efficiency of exciton dissociation at the interface between a conjugated polymer and an electron acceptor, Appl. Phys. Lett. 99 (2011) 013302.
Available:https://doi.org/10.1063/1.3607481
[43] C. Deibel, T. Strobel, and V. Dyakonov, Role of the charge transfer state in organic donor-acceptor solar cells, Adv. Mate. 22 (2010) 4097-4111.
Available:https://doi.org/10.1002/adma.201000376
[44] C. Deibel, Charge carrier dissociation and recombination in polymer solar cells, Phys. Status Solidi A.206 (2009) 2731-2736.
Available:https://doi.org/10.1002/pssa.200925282
[45] N.S. Christ, S.W. Kettlitz, S. Valouch, S. Zufle, C. Gartner, M. Punke et al., Nanosecond response of organic solar cells and photodetectors, J. Appl. Phys. 105 (2009) 104513.
Available:https://doi.org/10.1063/1.3130399
[46] G. Juska, K. Genevicius, N. Nekrasa et al., Charge carrier transport, recombination, and trapping in organic solar cells studied by double injunction technique, IEEE J. Sel. Top. Quantum Electron. 16 (2010) 1764-1769.
Available:https://doi.org/10.1109/JSTQE.2010.2041752
[47] R.C.I. Mackenzie, T. Kirchartz, G. F.A. Dibb, and J. Nelson, Modeling non-geminate recombination in P3HT:PCBM solar cells, J. Phys. Chem. C.115 (2011) 9806-9813.
Available:https://doi.org/10.1021/jp200234m
[48] A. Mahmoudloo, Investigation and Simulation of Recombination Models in Virtual Organic Solar Cell, Journal of Optoelectronical Nanostructures, 7.4 (2022) 1-12.
[49] D. Jalalian1, A. Ghadimi, A. K. Sarkaleh, Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells, Journal of Optoelectronical Nanostructures, 5.2 (2020) 65-78.
[50] S. L. M. Vanmensfoort, V. Shabro, R. J. D. Vries, R. A. J. Janssen, and R. Coehoorn, Hole Transport in The Organic Small Molecule Material: Evidence For The Presence of Correlated Disorder, J. Appl. Phys. 107 (2010) 113710.
Available:https://doi.org/10.1063/1.3407561
[51] A. ayobi, S.N. Mirnia, Influence of Gaussian disorder and exponential traps on charge carriers transport and recombination in single layer polymer light-emitting diodes based on PFO as emitting layer, Opt. Quant. Elect (2019).
Available:https://doi.org/10.1007/s11082-019-1997-3
[52] A. Pivrikas, N. S. Sariciftci, G. Juska, and R. Osterbacka, A review of charge transport and recombination in polymer/fullerene organic solar cells, Prog.in Photovolt.: Res. Appl. 15 (2007) 677-696.
Available:https://doi.org/10.1002/pip.791
[53] H. Hashemi , M.R. Shayesteh, M.R. Moslemi, A Carbon Nanotube CNT –based SiGe Thin Film Solar cell structure, Journal of optoelectronical Nano structures, 6.1(2021) 71- 86
Available:https://doi.org/10.30495/JOPN. 2021.4541
[54] J. Hwang, A. Wan, and A. Kahn, Energetics of metal-organic interfaces: New experiments and assessment of the field, Mater. Sci. Eng: R: Rep. 64 (2009) 1-31.
Available:https://doi.org/10.1016/j.mser.2008.12.001
[55] G. Garcia-Belmonte,Temperature dependence of open-circuit voltage in organic solar cells from generation-recombination kinetic balance, Sol. Energy Mater. Sol. Cells 94 (2010) 2166-2169.
Available:https://doi.org/10.1016/j.solmat.2010.07.006
[56] J. Wang,L. Xu,Y. J. Lee,M. D. A. Villa,A. V. Malko,and J. W. P. Hsu, Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices, Nano Lett.15 (2015) 7627−7632.
Available:https://doi.org/10.1021/acs.nanolett.5b03473
[57] M. Nyman, O. J. Sandberg, W. Li, S. Zeiske, R. Kerremans, P. Meredith, and A. Armin, Requirements for Making Thick Junctions of Organic Solar Cells based on Nonfullerene Acceptors, Sol. RRL.5 (2021) 2100018.
Available:https://doi.org/10.1002/solr.202100018
[58] M. Abdallaoui, N. Sengouga, A. Chala, A.F. Meftah, A.M. Meftah, Comparative study of conventional and inverted P3HT: PCBM organic solar cell, Optical Materials 105 (2020) 109916.
Available:https://doi.org/10.1016/j.optmat.2020.109916