[2]
M. Cheraghizade.
Optoelectronic Properties of PbS Films: Effect of Carrier Gas. Journal of Optoelectronical Nanostructures., 4(2) (2019) 1-12. https://jopn.marvdasht.iau.ir/article_3474.html.
[3]
M. A. Zekavat Fetrat,
M. Sabaeian, and
G. Solookinejad.
The effect of ambient temperature on the linear and nonlinear optical properties of truncated pyramidal-shaped InAs/GaAs quantum dot. Journal of Optoelectronical Nanostructures., 6 (3) (2021) 81- 92. https://jopn.marvdasht.iau.ir/article_4980.html .
[4] Hossein Bahramiyan, and Somayeh Bagheri. Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect. Journal of Optoelectronical Nanostructures., 3 (3) (2018) 79- 100. https://jopn.marvdasht.iau.ir/article_3047.html.
[5] O. bahrami, and A. Baharvand. Nonlinear Optical Effects in One Dimensional Multi-layer Structure Consisting of Polar Ferroelectric Called LiTaO3. Journal of Optoelectronical Nanostructures., 6(1) (2021) 21-34. https://jopn.marvdasht.iau.ir/article_4539.html.
[8]
C. Chen,
K. Wang, and
L. Luo.
AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nanotechnology., 13 (2022) 29. https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-022-00138-7.
[9] M. T. Pambudi et al., Localized surface plasmon effect on 3-mercaptopropionic acid and citrate stabilized gold nanoparticles for biosensor application. Journal of Nonlinear Optical Physics & Materials., 31(04) (2022) 2350004. https://www.worldscientific.com/doi/10.1142/S0218863523500042.
[10] L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour. Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone. physica status solidi (a)., 207(10) (2010) 2303-2310. https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201026021.
[11] H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour. Thermo-optical properties of colloids enhanced by gold nanoparticles. Japanese Journal of Applied Physics., 49(8R) (2010) 085002. https://iopscience.iop.org/article/10.1143/JJAP.49.085002.
[12] R. F. Souza, M. A. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann,
Nonlinear optical properties of Au nanoparticles colloidal system: local and nonlocal responses. Applied Physics Letters., 92(20) (2008) 201902.
https://doi.org/10.1063/1.2929385.
[13] H. Aleali, L. Sarkhosh, R. Karimzadeh, and N. Mansour. Threshold-tunable optical limiters of Au nanoparticles in castor oil. Journal of Nonlinear Optical Physics & Materials., 21(02) (2012) 1250024. https://www.worldscientific.com/doi/abs/10.1142/S0218863512500245.
[14] L. Sarkhosh, and N. Mansour. Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles. Laser Physics., 25(6) (2015) 065404. https://iopscience.iop.org/article/10.1088/1054-660X/25/6/065404.
[15] L. Sarkhosh, and N. Mansour. Analysis of Z-scan measurement for large thermal nonlinear refraction in gold nanoparticle colloid. Journal of Nonlinear Optical Physics & Materials., 24(02) (2015)1550014. https://www.worldscientific.com/doi/abs/10.1142/S0218863515500149.
[17] G. Baffou , F. Cichos, and R. Quidant. Applications and challenges of thermoplasmonics. Nature Materials., 19 (2020) 946–958. https://www.nature.com/articles/s41563-020-0740-6.
[18] A. Kumar, A. Taneja, T. Mohanty, and R. P. Singh. Effect of laser beam propagation through the plasmonic nanoparticles suspension. Results in Optics., 3 (2021) 100081. https://www.sciencedirect.com/science/article/pii/S2666950121000298.
[19] B. Azemoodeh Afshar, A. Jafari, Mir M. Golzan and R. Naderali,
Nonlinear optical properties of gold nanoparticles produced by laser ablation at two different radiation wavelengths.
Results in Optics.,
12 (2023) 100462. https://www.sciencedirect.com/science/article/pii/S2666950123001141.
[22]
B. Pishnamazi, and
E. Koushki.
Study of nonlinear optical diffraction patterns using machine learning models based on ResNet 152 architecture.
AIP Advances., 13(1) (2023) 015020. https://pubs.aip.org/aip/adv/article/13/1/015020/2871165/Study-of-nonlinear-optical-diffraction-patterns.
[23] Qusay. M. A. Hassan, C. A. Emshary, and H. A. Sultan.
Investigating the optical nonlinear properties and limiting optical of eosin methylene blue solution using a cw laser beam.
Physica Scripta.,
96 (2021) 9. https://iopscience.iop.org/article/10.1088/1402-4896/ac0868/meta.
[24] Y. Shan, Z. Li, B. Ruan, J. Zhu, Y. Xiang, and X. Dai. Two-dimensional Bi2S3-based all-optical photonic devices with strong nonlinearity due to spatial self-phase modulation. Nanophotonics., 8(12) (2019) 2225-2234. https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0231/html?lang=en.
[25] R. Karimzadeh. Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow. Journal of Optics., 14(9) (2012) 095701. https://iopscience.iop.org/article/10.1088/2040-8978/14/9/095701/meta.
[26] R. Karimzadeh. Studies of spatial self-phase modulation of the laser beam passing through the liquids. Optics communications., 286 (2013) 329-333. https://www.sciencedirect.com/science/article/abs/pii/S0030401812009054.
[27] B. M. Irivas, M. A. Carrasco, M. M. Otero, R. R. García, and M. I. Castillo. Far-field diffraction patterns by a thin nonlinear absorptive nonlocal media. optics Express., 23(11) (2015) 14036-14043. https://opg.optica.org/oe/fulltext.cfm?uri=oe-23-11-14036&id=318911.
[28] J. Whinnery, D. Miller, and F. Dabby. Thermal convention and spherical aberration distortion of laser beams in low-loss liquids. IEEE Journal of Quantum Electronics., 3(9) (1967) 382-383. https://ieeexplore.ieee.org/abstract/document/1074612/.
[29] S. S. Sarkisov.
Circulation of fluids induced by self-acting laser beam. Journal of applied physics., 99(11) (2006) 114903.
https://pubs.aip.org/aip/jap/article- abstract/99/11/114903/144019/Circulation-of-fluids-induced-by-self-acting-laser?redirectedFrom=fulltext.
[30] J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, Long‐Transient Effects in Lasers with Inserted Liquid Samples. J. Appl. Phys., 36 (1965) 3-8. https://pubs.aip.org/aip/jap/article-abstract/36/1/3/365858/Long-Transient-Effects-in-Lasers-with-Inserted?redirectedFrom=fulltext.
[32] T. Mohamed, M. H. El-Motlak, S. Mamdouh, M. Ashour, H. Ahmed, H. Qayyum, and A. Mahmoud. Excitation wavelenghth and colloids concentration-dependent nonlinear optical properties of silver nanoparticles synthesized by laser ablation. Materials., 15 (2022) 7348. https://www.mdpi.com/1996-1944/15/20/7348.
[33] Y. Gao, Q. Chang, W. Jiao, H. Ye, Y. Li, Y. Wang, Y. Song, and D. Zhu. Solvent dependent optical limiting behavior of lead nanowires stabilized by [60] fullerene derivative. Appl. Phys. B., 88 (2017) 89–92. https://link.springer.com/article/10.1007/s00340-007-2669-8.
[34] G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys., 95 (2004)1455–1459. https://pubs.aip.org/aip/jap/article-abstract/95/3/1455/770788/Preparation-of-carbon-nanoparticles-with-strong?redirectedFrom=fulltext.
[35] V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti. Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption. J. Phys. Chem. B., 109 (2015) 23125–23128. https://pubmed.ncbi.nlm.nih.gov/16375271/.
[36] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE journal of quantum electronics., 26(4) (1990) 760-769. https://ieeexplore.ieee.org/document/53394.
[37] A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. JOSA B., 9(3) (1992) 405-414. https://opg.optica.org/viewmedia.cfm?r=1&rwjcode=josab&uri=josab-9-3-405&html=true.
[38] L. Agiotis, and M. Meunier. Nonlinear thermal lensing of high repetition rate ultrafast laser light in plasmonic nano-colloid. Nanophotonics., 11(5) (2022) 1051–1062. https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0775/html?lang=en.
[39] Yu-Chien Huang, Te-Hsin Chen, Jz-Yuan Juo, Shi-Wei Chu, and Chia-Lung Hsieh. Quantitative Imaging of Single Light-Absorbing Nanoparticles by Widefield Interferometric Photothermal Microscopy. ACS Photonics., 8 (2021) 592−602. https://pubs.acs.org/doi/abs/10.1021/acsphotonics.0c01648.
[40] Yi-Shiou Duh, Y. Nagasaki, Yu-Lung Tang, Pang-Han Wu, Hao-Yu Cheng, Te-Hsin Yen, Hou-Xian Ding, K. Nishida, I. Hotta, Jhen-Hong Yang, Yu-Ping Lo, Kuo-Ping Chen, K. Fujita, Chih-Wei Chang, Kung-Hsuan Lin, J. Takahara, and Shi-Wei Chu. Giant photothermal nonlinearity in a single silicon nanostructure. Nature Communications., 11 (2020) 4101. https://www.nature.com/articles/s41467-020-17846-6.
[41] R. Karimzadeh, and M. Arshadi. Thermal lens measurement of the nonlinear phase shift and convection velocity. Laser Phys., 23 (2013) 115402. https://iopscience.iop.org/article/10.1088/1054-660X/23/11/115402/meta.
[42] H. Aleali, and N. Mansour. Thermal-induced nonlinearity enhancement in Ag nanoparticles colloids by low thermal conductivity liquids. Journal of Optics., 48(2) (2019) 172-178. https://link.springer.com/article/10.1007/s12596-019-00520-6.
[43] S. Hashemi Zadeh, M. Rashidi-Huyeh, and B. Palpant. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance. Journal of Applied Physics., 122(16) (2017) 163108. https://ui.adsabs.harvard.edu/abs/2017JAP...122p3108H/abstract.