Document Type : Articles
Authors
Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Abstract
Keywords
[1] Liu PY, Chin LK, Ser W, Chen HF, Hsieh M, Lee H (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16:634–644. https://doi.org/10.1039/C5LC01445J
[2] Liu PY, Chin LK, Ser W, Ayi TC, Yap PH, Bourouina T, Leprince-Wang Y (2014) An optofluidic imaging system to measure the biophysical signature of single waterborne bacteria. Lab Chip 14: 4237–4243. https://doi.org/10.1039/C4LC00783B
[3] Coles HJ, Jennings R,Morris VJ (1975) Refractive index increment measurement for bacterial suspensions. Phys Med Biol 20:310–313. https://doi.org/10.1088/0031-9155/20/2/013
[4] Bateman JB, Wagman J, Caratensen EL (1966) Refraction and absorption of light in bacterial suspensions. Colloid Polym Sci 208:44–58. https://doi.org/10.1007/BF01499867
[5] Servatkhah, M., & Goodarzi, S. (2017). Interaction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters. Journal of Optoelectronical Nanostructures, 2(3), 25-38. https://dorl.net/dor/20.1001.1.24237361.2017.2.3.3.1
[6] Firoozi, A., & Mohammadi, A. (2016). Investigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method. Journal of Optoelectronical Nanostructures, 1(3), 27-34. https://dorl.net/dor/20.1001.1.24237361.2016.1.3.3.4
[7] Ozozco CA, Urbon C, Knight MW, Halas NJ et al (2014) Au nanomatryoshkas as efficient near-infrared photothermal tranducers for cancer treatment: Benchmarking against nanoshells. ACS Nano 6:6372. https://doi.org/10.1021/nn501871d
[8] Oh SY, Heo NS, Shukla S, Huh YS et al (2017) Development of gold nanoparticle aptamer-based LSPR sensing chips for rapid detection of Salmonella typhimurium in pork meat. Sci Rep 7:10130. https://doi.org/10.1038/s41598-017-10188-2
[9] Gruhl, F.J., Rapp, B.E., Lange, K.: Biosensors for diagnostic applications. Adv. Biochem. Eng. Biotechnol. 133, 115–148 (2013). https://doi.org/10.1007/10_2011_130
[10] 63. Kofke MJ, Waldeck DH, Walker GC (2010) Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission. Opt Express 18(8):7705–7713. https://doi.org/10.1364/OE.18.007705
[11 Wu M, Zhao X, Zhang J, Schalch J, Duan G, Cremin K, Averitt RD, Zhang X (2017) A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl Phys Lett 111(5):051101. http://dx.doi.org/10.1063/1.4996897
[12] Li R, Wu D, Liu Y, Yu L, Yu Z, Ye H (2017) Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res Lett 12(1):1. http://dx.doi.org/10.1186/s11671-016-1773-2
[13] Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer). https://extras.springer.com/?query=978-0-387-33150-8
[14] Azimi, H., Ahmadi, S. H., Manafi, M. R., Hashemi Moosavi, S. H., & Najafi, M. (2021). Development a simple and sensitive method for determination low trace of nickel by local surface plasmon resonance of citrate capped silver nanoparticles. Journal of Optoelectronical Nanostructures, 6(2), 23-40. https://doi.org/10.30495/jopn.2021.26382.1210
[15] Zoghi, M. (2018). Reflection Shifts in Gold Nanoparticles. Journal of Optoelectronical Nanostructures, 3(1), 1-14. https://dorl.net/dor/20.1001.1.24237361.2018.3.1.1.2
[16] Mohebbifar, M. R., & Zohrabi, M. (2019). Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation. Journal of Optoelectronical Nanostructures, 4(4), 65-80. https://dorl.net/dor/20.1001.1.24237361.2019.4.4.5.9
[17] Yang WH, Zhang C, Sun S, Jing J, Song Q, Xiao S (2017) Dark plasmonic modes based perfect absorption and refractive index sensing. Nanoscale 9:8907–8912. https://doi.org/10.1039/C7NR02768K
[19] Kittel C and McEuen P 1996 Introduction to Solid State Physics (New York: Wiley). https://en.wikipedia.org/wiki/Special:BookSources/978-1-119-45416-8
[20] Liu N, MeschM, Weiss T, HentschelM, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. NanoLetters 10(7)2342–2348. https://doi.org/10.1021/nl9041033
[21] YeYQ, Jin Y, He S (2010) Omnidirectional, polarization insensitive and broadband thin absorber in the terahertz regime. J Opt Soc Am B: Opt Phys 27(3):498–504. https://doi.org/10.48550/arXiv.0906.2137
[22] Park H, Kim, Ho J, Beresford R, Xu J (2011) Effects of electrical contacts on the photoconductive gain of nanowire photodetectors. Appl Phys Lett 99(14):143110. https://doi.org/10.1063/1.3647559
[23] S.A. Maier, Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media. https://extras.springer.com/?query=978-0-387-33150-8
[24] Wannemacher R (2001) Plasmon supported-transmission of light through nanometric holes in metallic thin films. Opt Commun 195:107–118. https://doi.org/10.1016/S0030-4018(01)01333-5
[25] Cattoni A, Ghenuche P, Haghiri-Gosnet AM, Decanini D, Chen J, Pelouard JL, Collin S (2011) Lambda (3)/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett 11(9):3557–3563. https://doi.org/10.1021/nl201004c
[26] Francs GC d, Molenda D, Fischer UC, Naber A (2005) Enhanced light confinement in a triangular aperture: experimental evidence and numerical calculations. Phys Rev B 72(16). http://dx.doi.org/10.1103/PhysRevB.72.165111
[27] Irannejad M, Cui B, Yavuz M (2015) Optical properties and liquid sensitivity of Au-SiO2-Au nanobelt structure. Plasmonics 11(1):1– 9. https://doi.org/10.1007/s11468-015-9977-3
[28] A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials, vol. 11, no. 7, p. 1091, Jun. 2018. https://doi.org/10.3390/ma11071091
[29] Wei Z, Li X, Zhong N, Tan X, Zhang X, Liu H, Meng H, Liang R (2016) Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 12:641–647. https://link.springer.com/article/10.1007/s11468-016-0309-z
[30] Zhou P, Zheng G (2018) High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application. Opt Mater 78:471–476. https://doi.org/10.1016/j.optmat.2018.02.060
[31] Lu X, Zhang L, Zhang T (2015) Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt Express 23:20715–20720. https://doi.org/10.1364/OE.23.020715
[32] Chen, J. et al. Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Opt. Mater. Express 8, 342–345 (2018). https://doi.org/10.1364/OME.8.000342