[1] M.M. Tuckerman, Analytical profiles of drug substances, Vol. 11. Edited
by Klaus Florey, Academic Press, 111 Fifth Avenue, New York, NY
10003. 1982. 665 pp. 15 × 23 cm. Price $39.00, J. Pharm. Sci. 72 (1983)
582. doi:10.1002/jps.2600720535.
[2] A.O. Nur, J.S. Zhang, Recent progress in sustained/controlled oral
delivery of captopril: an overview, Int. J. Pharm. 194 (2000) 139–146.
doi:https://doi.org/10.1016/S0378-5173(99)00362-2.
[3] M. Guivernau, F. Armijo, R. Rosas, Role of sulfhydryl groups in the
stimulatory effect of captopril on vascular prostacyclin synthesis., Eur. J.
Pharmacol. 198 (1991) 1–6. doi:10.1016/0014-2999(91)90554-4.
[4] N. Aykin, R. Neal, M. Yusof, N. Ercal, Determination of captopril in
biological samples by high-performance liquid chromatography with
ThioGloTM3 derivatization, Biomed. Chromatogr. 15 (2001) 427–432.
doi:10.1002/bmc.95.
[5] A.M. Pimenta, A.N. Araújo, M.C.B.S.M. Montenegro, Sequential
injection analysis of captopril based on colorimetric and potentiometric
detection, Anal. Chim. Acta. 438 (2001) 31–38.
doi:https://doi.org/10.1016/S0003-2670(00)01307-6.
[6] T. Mirza, H.S.I. Tan, Determination of captopril in pharmaceutical tablets
by anion-exchange HPLC using indirect photometric detection; a study in
systematic method development, J. Pharm. Biomed. Anal. 25 (2001) 39–
52. doi:https://doi.org/10.1016/S0731-7085(00)00462-3.
[7] A.M. El-Brashy, Titrimetric determination of captopril in dosage forms.,
Acta Pharm. Hung. 65 (1995) 91–93.
https://europepmc.org/article/med/7572189.
[8] P. Pourhakkak, M.A. Karimi, H. Tavallali, P. Pourhakkak, M. Mazloum
Ardakani, A New Potentiometric Sensor for Rapid Determination of
Captopril in Pharmaceutical Formulation and Biological Samples, Iran. J.
Anal. Chem. (2022). https://doi.org/10.30473/ijac.2022.63786.1234.
[9] P.T. Lee, R.G. Compton, Precursor modified electrodes: electrochemical
detection of captopril, Electroanalysis. 27 (2015) 2286–2294.
https://doi.org/10.1002/elan.201500093.
[10] R.A. Soomro, M.M. Tunesi, S. Karakus, N. Kalwar, Highly sensitive
electrochemical determination of captopril using CuO modified ITO
electrode: the effect of in situ grown nanostructures over signal
sensitivity, RSC Adv. 7 (2017) 19353–19362. DOI: 10.1039/C7RA01538K
[11] A. Ghosh, A.B. Pawar, T. Chirmade, S.M. Jathar, R. Bhambure, D.
Sengupta, A.P. Giri, M.J. Kulkarni, Investigation of the Captopril–Insulin
Interaction by Mass Spectrometry and Computational Approaches
Reveals that Captopril Induces Structural Changes in Insulin, ACS
Omega. 7 (2022) 23115–23126. https://doi.org/10.1021
/acsomega.2c00660
[12] Z.S. Li, H.N. Qian, T.Y. Fan, Preparation and in vitro evaluation of fused
deposition modeling 3D printed compound tablets of captopril and
hydrochlorothiazide, Beijing Da Xue Xue Bao. Yi Xue Ban= J. Peking
Univ. Heal. Sci. 54 (2022) 572–577. https://doi.org/10.19723/j.issn.1671-
167x.2021.02.020.
[13] S.B. Simanjuntak, M.J. Kalalo, T. Hebber, T.E. Tallei, Fatimawali,
Angiotensin converting enzyme inhibitors from Abelmoschus manihot
(L.) Medik leaves: A molecular docking study, in: AIP Conf. Proc., AIP
Publishing LLC, 2022: p. 70002. https://doi.org/10.1063/5.0104277.
[14] J.A. Badejo, O.S. Michael, M.O. Adetona, O. Abdulmalik, E. Agbebi,
E.O. Iwalewa, O.S. Fagbemi, Mechanisms of anti-hypertensive activity of
methanol leaf extract and fractions of Persea americana Mill.(Lauraceae)
in rats, Niger. J. Pharm. Res. 18 (2022) 63–74.
https://www.ajol.info/index.php/njpr/article/view/228604
[15] I. Giangrieco, M. Tamburrini, L. Tuppo, M.S. Pasquariello, M.A.
Ciardiello, Healthy biological activities in legume flours from industrial
cooking, Food Biosci. 48 (2022) 101743.
https://doi.org/10.1016/j.fbio.2022.101743
[16] L.B. Kuntze, R.C. Antonio, T.C. Izidoro‐Toledo, C.A. Meschiari, J.E.
Tanus‐Santos, R.F. Gerlach, Captopril and Lisinopril Only Inhibit Matrix
Metalloproteinase‐2 (MMP‐2) Activity at Millimolar Concentrations,
Basic Clin. Pharmacol. Toxicol. 114 (2014) 233–239. https://doi.org/
10.1111/bcpt.12151.
[17] A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive study on
the electrochemical advanced oxidation of antihypertensive captopril in
different cells and aqueous matrices, Appl. Catal. B Environ. 277 (2020)
119240. https://doi.org/10.1016/j.apcatb.2020.119240.
[18] M. Skowron, W. Ciesielski, Spectrophotometric determination of methimazole, D-penicillamine, captopril, and disulfiram in pure form and
drug formulations, J. Anal. Chem. 66 (2011) 714–719. https://link.
springer.com/article/10.1134/S1061934811080132.
[19] B. Li, Z. Zhang, M. Wu, Flow-injection chemiluminescence
determination of captopril using on-line electrogenerated silver (II) as the
oxidant, Microchem. J. 70 (2001) 85–91. https://doi.org/10.1016/S0026-
265X(01)00090-X.
[20] M. Ghazi-Khansari, A. Mohammadi-Bardbori, Captopril ameliorates
toxicity induced by paraquat in mitochondria isolated from the rat liver,
Toxicol. Vitr. 21 (2007) 403–407. https://doi.org/10.1016/j.tiv.2006.10.
001.
[21] A.A. Ensafi, H. Karimi-Maleh, M. Ghiaci, M. Arshadi, Characterization
of Mn-nanoparticles decorated organo-functionalized SiO2–Al2O3
mixed-oxide as a novel electrochemical sensor: application for the
voltammetric determination of captopril, J. Mater. Chem. 21 (2011)
15022–15030. doi:10.1039/C1JM11909E.
[22] M. Safaei, H. Beitollahi, M.R. Shishehbore, S. Tajik, R. hosseinzadeh,
Electrocatalytic determination of captopril using a carbon paste electrode
modified with N-(ferrocenyl-methylidene)fluorene-2-amine and
graphene/ZnO nanocomposite, J. Serbian Chem. Soc. Vol 84, No 2
(2019)DO - 10.2298/JSC180414095S . (2019). https://shd-pub.org.rs/
index.php/JSCS/article/view/6772.
[23] M.B. Gholivand, M. Khodadadian, Simultaneous Voltammetric
Determination of Captopril and Hydrochlorothiazide on a
Graphene/Ferrocene Composite Carbon Paste Electrode, Electroanalysis.
25 (2013) 1263–1270. doi:10.1002/elan.201200665.
[24] H. Bagheri, H. Karimi-Maleh, F. Karimi, S. Mallakpour, M. Keyvanfard,
Square wave voltammetric determination of captopril in liquid phase
using N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified ZnO/CNT
carbon paste electrode as a novel electrochemical sensor, J. Mol. Liq. 198
(2014) 193–199. doi:https://doi.org/10.1016/j.molliq.2014.06.027.
[25] W. Zheng, Y.F. Zheng, K.W. Jin, N. Wang, Direct electrochemistry and
electrocatalysis of hemoglobin immobilized in TiO2 nanotube films,
Talanta. 74 (2008) 1414–1419. doi:https://doi.org/10.1016/j.talanta.2007
.09.017.
[26] H. Beitollahi, S. Ghofrani Ivari, R. Alizadeh, R. Hosseinzadeh, Preparation, Characterization and Electrochemical Application of ZnO-
CuO Nanoplates for Voltammetric Determination of Captopril and
Tryptophan Using Modified Carbon Paste Electrode, Electroanalysis. 27
(2015) 1742–1749. doi:10.1002/elan.201500016.
[27] H. Beitollahi, M.A. Taher, M. Ahmadipour, R. Hosseinzadeh,
Electrocatalytic determination of captopril using a modified carbon
nanotube paste electrode: Application to determination of captopril in
pharmaceutical and biological samples, Measurement. 47 (2014) 770–
776. doi:https://doi.org/10.1016/j.measurement.2013.10.001.
[28] B. Rezaei, S. Damiri, Voltammetric behavior of multi-walled carbon
nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system
as a sensor for determination of captopril, Sensors Actuators B Chem. 134
(2008) 324–331. https://doi.org/10.1016/j.snb.2008.05.004.
[29] A.A. Ensafi, M. Monsef, B. Rezaei, H. Karimi-Maleh, Electrocatalytic
oxidation of captopril on a vinylferrocene modified carbon nanotubes
paste electrode, Anal. Methods. 4 (2012) 1332–1338. https://pubs.rsc.org
/en/content/articlelanding/2012/ay/c2ay05815d/unauth.
[30] H. Bahramipur, F. Jalali, Voltammetric determination of captopril using
chlorpromazine as a homogeneous mediator, Int. J. Electrochem. 2011
(2011). https://doi.org/10.4061/2011/864358.
[31] H. Karimi-Maleh, A.A. Ensafi, A.R. Allafchian, Fast and sensitive
determination of captopril by voltammetric method using
ferrocenedicarboxylic acid modified carbon paste electrode, J. Solid State
Electrochem. 14 (2010) 9. https://link.springer.com/article/10.1007/
s10008-008-0781-2.
[32] H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, A novel
voltammetric sensor employing zinc oxide nanoparticles and a new
ferrocene-derivative modified carbon paste electrode for determination of
captopril in drug samples, Anal. Methods. 8 (2016) 1780–1788. https://
doi.org/10.1039/C5AY03284A.
[33] R.-I. Stefan, J.K.F. van Staden, H.Y. Aboul-Enein, Amperometric
biosensors/sequential injection analysis system for simultaneous
determination of S-and R-captopril, Biosens. Bioelectron. 15 (2000) 1–5.
https://doi.org/10.1016/S0956-5663(99)00075-5.