[1] L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Solution-
processed hybrid perovskite photodetectors with high detectivity, Nat.
Commun. 5 (2014) 1–6. doi:10.1038/ncomms6404.
[2] H.R.S. Saman Salimpour, Impressive Reduction of Dark Current in InSb
Infrared Photodetector to achieve High Temperature Performance, J.
Optoelectron. Nanostructures. 3 (2018) 81–96.
doi:20.1001.1.24237361.2018.3.4.7.4.
[3] H.G.-B.-O. Somaye Jalaei, Javad Karamdel, Black Phosphorus Mid-Infrared
Photodetector with Circular Au/Pd Antennas, J. Optoelectron.
Nanostructures. 7 (2022) 37–54. doi:10.30495/JOPN.2022.29104.1239.
[4] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang, Trap Assisted Bulk
Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast
Response by Ag Hyperdoping, Adv. Opt. Mater. 6 (2018) 1–8.
doi:10.1002/adom.201700638.
[5] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V
compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815–
5875. doi:10.1063/1.1368156.
[6] C. Liu, K. Wang, C. Yi, X. Shi, P. Du, A.W. Smith, A. Karim, X. Gong,
Ultrasensitive solution-processed perovskite hybrid photodetectors, J. Mater.
Chem. C. 3 (2015) 6600–6606. doi:10.1039/c5tc00673b.
[7] K. Wang, C. Liu, C. Yi, L. Chen, J. Zhu, R.A. Weiss, X. Gong, Efficient
Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering, Adv.
Funct. Mater. 25 (2015) 6875–6884. doi:10.1002/adfm.201503160.
[8] H.-S. Rao, W.-G. Li, B.-X. Chen, D.-B. Kuang, C.-Y. Su, In Situ Growth of
120 cm2
CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for
Narrowband-Photodetectors, Adv. Mater. 29 (2017) 1602639.
doi:10.1002/adma.201602639.
[9] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient
Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide
Perovskites, Science. 338 (2012) 643–647. doi:10.1126/science.1228604.
[10] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband
perovskite single-crystal photodetectors enabled by surface-charge
recombination, Nat. Photonics. 9 (2015) 679–686.
doi:10.1038/nphoton.2015.156.
[11] R. Liu, J. Zhang, H. Zhou, Z. Song, Z. Song, C.R. Grice, D. Wu, L. Shen, H.
Wang, Solution-Processed High-Quality Cesium Lead Bromine Perovskite
Photodetectors with High Detectivity for Application in Visible Light
Communication, Adv. Opt. Mater. 8 (2020) 1–7.
doi:10.1002/adom.201901735.
[12] H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang,
Y. Yan, Self-powered CsPbBr3 nanowire photodetector with a vertical
structure, Nano Energy. 53 (2018) 880–886.
doi:10.1016/j.nanoen.2018.09.040.
[13] M.M.A. Shahram Rafiee Rafat, Zahra Ahangari, Performance Investigation
of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods
as Electron Transport Layers, J. Optoelectron. Nanostructures. 6 (2021) 75–
90. doi: 10.30495/JOPN.2021.28208.1224.
[14] A.N. Seyyed Reza Hosseini, Mahsa Bahramgour, Nagihan Delibas, A
Simulation Study around Investigating the Effect of Polymers on the
Structure and Performance of a Perovskite Solar Celle, J. Optoelectron.
Nanostructures. 7 (2022) 37–50. doi:10.30495/JOPN.2022.29720.1252.
[15] A.K.S. Davood Jalalian, Abbas Ghadimi, Investigation of the Effect of Band
Offset and Mobility of Organic/Inorganic HTM Layers on the Performance
of Perovskite Solar Cells, J. Optoelectron. Nanostructures. 5 (2020) 65–78.
doi: 20.1001.1.24237361.2020.5.2.6.3.
[16] D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu, X. Pan, H. Wan, J. Zhang, H.
Wang, X. Li, H. Zeng, Welding Perovskite Nanowires for Stable, Sensitive,
Flexible Photodetectors, ACS Nano. 14 (2020) 2777–2787.
doi:10.1021/acsnano.9b09315.
[17] Z. Cheng, K. Liu, J. Yang, X. Chen, X. Xie, B. Li, Z. Zhang, L. Liu, C. Shan,
D. Shen, High-Performance Planar-Type Ultraviolet Photodetector Based
on High-Quality CH3NH3PbCl3 Perovskite Single Crystals, ACS Appl.
Mater. Interfaces. 11 (2019) 34144–34150. doi:10.1021/acsami.9b09035.
[18] Y. Fang, J. Huang, Resolving weak light of sub-picowatt per square
centimeter by hybrid perovskite photodetectors enabled by noise reduction,
Adv. Mater. 27 (2015) 2804–2810. doi:10.1002/adma.201500099.
[19] W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.T.
Lee, J. Jie, Aligned Single-Crystalline Perovskite Microwire Arrays for
High-Performance Flexible Image Sensors with Long-Term Stability, Adv.
Mater. 28 (2016) 2201–2208. doi:10.1002/adma.201505126.
[20] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, T. Wu, Ambipolar
solution-processed hybrid perovskite phototransistors, Nat. Commun. 6
(2015) 1–8. doi:10.1038/ncomms9238.
[21] C. Liu, K. Wang, P. Du, E. Wang, X. Gong, A.J. Heeger, Ultrasensitive
solution-processed broad-band photodetectors using CH3NH3PbI3
perovskite hybrids and PbS quantum dots as light harvesters, Nanoscale. 7
(2015) 16460–16469. doi:10.1039/c5nr04575d.
[22] Y. Wang, D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad, S.M. Alshehri,
Perovskite/Polymer Hybrid Thin Films for High External Quantum
Efficiency Photodetectors with Wide Spectral Response from Visible to Near-
Infrared Wavelengths, Adv. Opt. Mater. 5 (2017) 1–6.
doi:10.1002/adom.201700213.
[23] Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and Stable Tin–Lead
Hybrid Perovskite Photodetectors Enabled by Double‐Sided Surface
Passivation for Infrared Upconversion Detection, Small. 16 (2020) 2001534.
doi:10.1002/smll.202001534.
[24] J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism
between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band
Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3, J. Phys. Chem. Lett. 6 (2015) 3503–3509. doi:10.1021/acs.jpclett.5b01738.
[25] T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka,
R. Hashimoto, R. Murdey, T. Sasamori, H. Do Kim, H. Ohkita, T. Handa, Y.
Kanemitsu, A. Wakamiya, Sn(IV)-free tin perovskite films realized by in situ
Sn(0) nanoparticle treatment of the precursor solution, Nat. Commun. 11
(2020) 3008. doi:10.1038/s41467-020-16726-3.
[26] B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie,
A.J. Pearson, Y. Puttisong, K.C. Gödel, H.E. Beere, D.A. Ritchie, A.D.
Mohite, S.E. Dutton, R.H. Friend, A. Sadhanala, High Open-Circuit Voltages
in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction
Photovoltaics, Adv. Mater. 29 (2017) 1604744.
doi:10.1002/adma.201604744.
[27] Z. Yang, A. Rajagopal, C.C. Chueh, S.B. Jo, B. Liu, T. Zhao, A.K.Y. Jen,
Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,
Adv. Mater. 28 (2016) 8990–8997. doi:10.1002/adma.201602696.
[28] S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok,
Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells
through SnF2-Pyrazine Complex, J. Am. Chem. Soc. 138 (2016) 3974–3977.
doi:10.1021/jacs.6b00142.
[29] X. Xu, C.C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L.Y. Lin, A.K.Y. Jen,
High-Performance Near-IR Photodetector Using Low-Bandgap
MA0.5FA0.5Pb0.5Sn0.5I3 Perovskite, Adv. Funct. Mater. 27 (2017) 1–6.
doi:10.1002/adfm.201701053.
[30] W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M.
Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly Sensitive
Low‐Bandgap Perovskite Photodetectors with Response from Ultraviolet to
the Near‐Infrared Region, Adv. Funct. Mater. 27 (2017) 1703953.
doi:10.1002/adfm.201703953.
[31] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline
semiconductor solar cells, Thin Solid Films. 361 (2000) 527–532.
doi:10.1016/S0040-6090(99)00825-1.
[32] C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M.M. Junda, C.
Wang, C. Jiang, M. Al‐Jassim, R.J. Ellingson, N.J. Podraza, K. Zhu, Y. Yan,
Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐
Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells, Adv. Energy
Mater. 9 (2019) 1803135. doi:10.1002/aenm.201803135.
[33] B. Subedi, C. Li, M.M. Junda, Z. Song, Y. Yan, N.J. Podraza, Effects of
intrinsic and atmospherically induced defects in narrow bandgap
(FASnI3)x(MAPbI3)1−x perovskite films and solar cells, J. Chem. Phys. 152
(2020) 064705. doi:10.1063/1.5126867.
[34] W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry, Possible efficiency
boosting of non-fullerene acceptor solar cell using device simulation, Opt.
Mater. (Amst). 91 (2019) 239–245. doi:10.1016/j.optmat.2019.03.023.
[35] G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li,
Y. Li, Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor
Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells
with Low Energy Loss, Adv. Funct. Mater. 28 (2018) 1–8.
doi:10.1002/adfm.201804427.
[36] G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey, M.A. Kamarudin, D.
Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T.N. Murakami,
H. Segawa, S. Hayase, Strain Relaxation and Light Management in Tin-Lead
Perovskite Solar Cells to Achieve High Efficiencies, ACS Energy Lett. 4
(2019) 1991–1998. doi:10.1021/acsenergylett.9b01237.
[37] G. Kapil, T.S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J.
Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T.N. Murakami,
H. Segawa, S. Hayase, Highly Efficient 17.6% Tin-Lead Mixed Perovskite
Solar Cells Realized through Spike Structure, Nano Lett. 18 (2018) 3600–
3607. doi:10.1021/acs.nanolett.8b00701.
[38] M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann, S.
Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, L. Kegelmann, F.
Zu, S. Albrecht, N. Koch, T. Kirchartz, M. Saliba, T. Unold, D. Neher, The
impact of energy alignment and interfacial recombination on the internal
and external open-circuit voltage of perovskite solar cells, Energy Environ.
Sci. 12 (2019) 2778–2788. doi:10.1039/c9ee02020a.
[39] Y. Raoui, H. Ez-Zahraouy, S. Kazim, S. Ahmad, Energy level engineering
of charge selective contact and halide perovskite by modulating band offset:
Mechanistic insights, J. Energy Chem. 54 (2021) 822–829.
doi:10.1016/j.jechem.2020.06.030.
[40] N. Lakhdar, A. Hima, Electron transport material effect on performance of
perovskite solar cells based on CH3NH3GeI3, Opt. Mater. 99 (2020) 109517.
doi:10.1016/j.optmat.2019.109517.
[41] Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Resolving spatial and energetic
distributions of trap states in metal halide perovskite solar cells, Science.
367 (2020) 1352–1358. doi:10.1126/science.aba0893.
[42] M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin,
K. Techato, N. Nuthammachot, T. Chowdhury, M. Suklueng, Effect of deep-
level defect density of the absorber layer and n/i interface in perovskite solar
cells by SCAPS-1D, Results Phys. 16 (2020) 102839.
doi:10.1016/j.rinp.2019.102839.
[43] T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W.E.I. Sha, H. Zhu, Y.
(Michael) Yang, Realizing High Efficiency over 20% of Low‐Bandgap Pb–
Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn4+, Sol. RRL. 4
(2020) 1900467. doi:10.1002/solr.201900467.
[44] K. Frohna, S.D. Stranks, Hybrid perovskites for device applications, in:
Handb. Org. Mater. Electron. Photonic Devices, Elsevier, 2019: pp. 211–
256. doi:10.1016/B978-0-08-102284-9.00007-3.
[45] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T.
Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole Diffusion
Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite
Absorber, Science. 342 (2013) 341–344. doi:10.1126/science.1243982.
[46] T.S. Ripolles, D. Yamasuso, Y. Zhang, M.A. Kamarudin, C. Ding, D.
Hirotani, Q. Shen, S. Hayase, New Tin(II) Fluoride Derivative as a
Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead
Perovskite Solar Cells, J. Phys. Chem. C. 122 (2018) 27284–27291.
doi:10.1021/acs.jpcc.8b09609.
[47] C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen,
W. Huang, Highly Sensitive, Fast Response Perovskite Photodetectors
Demonstrated in Weak Light Detection Circuit and Visible Light
Communication System, Small. 15 (2019) 1903599.
doi:10.1002/smll.201903599.