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Abstract:  
Since 1993, Devices based on CNTs have applications 

ranging from nanoelectronics to optoelectronics. The 

challenging issue in designing these devices is that the 

nonequilibrium Green's function (NEGF) method has to 

be employed to solve the Schrödinger and Poisson 
equations, which is complex and time consuming. In the 

present study, a novel smart and optimal algorithm is 

presented for fast and accurate modeling of CNT field-

effect transistors (CNTFETs) based on an artificial neural 

network. A new and efficient way is presented for 

incrementally constructing radial basis function (RBF) 

networks with optimized neuron radii to obtain the 

estimator network. An incremental extreme learning 

machine (I-ELM) algorithm is used to train the RBF 

network. To ensure the optimal radii for incremental 

neurons, this algorithm utilizes a modified version of an 
optimization algorithm known as the Nelder-Mead 

simplex algorithm. Results confirm that the proposed 

approach reduces the network size for faster error 

convergence while preserving the estimation accuracy. 
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1. INTRODUCTION 

The performance of electrical circuits can be improved using carbon nanotube 

(CNT)-based devices [1-3]. This improvement can also be achieved by the 

diminishment of metal-oxide-semiconductor field-effect transistors 

(MOSFETs). Conversely, smaller gate lengths can lead to the degradation in the 

transfer characteristics of planar MOSFETs due to short channel effect[4-7]. To 

overcome this problem, a favorable alternative to MOSFETs is CNTFETs[8]. In 

fact, a  carbon nanotube is a sheet of graphene rolled into a tube. A CNT may be 

semiconducting or metallic depending on how the graphene sheet is rolled up 

[9]. Therefore, CNTs can be an excellent candidate for high-performance 

transistors. Semiconducting nanotubes, such as single-walled CNTs, have 

attracted the attention of researchers [10, 11]. The first type of CNTFETs was 

made of oxidized silicon substrates containing a thick Sio2 layer and a back-

gate. This configuration could not provide an appropriate gate control on drain 

current [11]. The first top gate CNTFET [12] was designed by Wind et al. to 

achieve a better performance compared to MOSFETs. In [13], the main concepts 

of quantum transport, such as self-energy and density matrix are explained and 

the formalism of NEGF is introduced [14, 15]. The results of CNTFET 

simulations are presented in [16] by developing systematical models of 

increasing versatility and rigor. Multiscale electronic simulation of CNTs is 

presented in [17]. This reference focusses on an element of the hierarchy. 

Moreover, ballistic CNTFETs are simulated in this reference using the solution 

of Poisson and Schrödinger equations self-consistently based on the NEGF 

formalism. The main advantages and disadvantages of different CNTFET 

designs are discussed in [18] using simulation and experimental results. 

Moreover, the authors of this reference use the findings of the study to evaluate 

a new well-suited technique, called the tunneling-CNTFET (T-CNTFET) for 

CNT-based transistor applications. The parameters of power delay product 

(PDP) and intrinsic switching speed are considered in this research. in [19] an 

innovative tunnel field-effect transistor (TFET) is discussed. The superior gate 

controllability makes TFET a promising candidate. In [5], the authors show that 

the voltage swing and noise margin depend on the supply voltage and tube 

diameter. Moreover, they found that CNT diameters from 1 to 1.5 nm result in 

the best ratio of ION-to-IOFF with a noise margin that is good. Reference [20] 

presents compact single-walled CNTFETs (SW-CNTFETs) with either 

semiconducting or metallic CNT conducting channel. The results of this 

reference show that the quantum confinement in axial and circumferential 
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directions has a screening effect due to parallel CNTs. Reference [21] 

investigates the self-heating effect in a CNT-based FET and compares the 

conventional MOSFET structure using Silvaco TCAD software. In [22], it is 

shown that nonuniformly-doped CNTFETs can suppress ambipolar conduction 

and band to band tunneling. The energy band calculations confirm 

improvements in off current and ambipolar behavior. In [23], instead of using 

NEGF formalism, CNT-MOSFETs are modeled and simulated by utilizing 

multi-layer perceptron (MLP) networks as an artificial neural network (ANN). 

The ANN is trained and optimized with the data extracted from the MATLAB 

script moscnt.1.0. Weights are determined using the back-propagation 

technique. A fast and accurate sub circuit is proposed based on ANN in 

CNTFET technology using HSPICE to simulate an inverter circuit and a current 

source [24]. A multiscale approach is used to model nanodevices for describing 

the full complexity of these devices, and different transport formalisms are used. 

Then, the numerical and corresponding experimental results are carefully 

compared [25]. In [8], the electrical features of nanotube networks are simulated 

using the Monte Carlo method. Moreover, an equivalent netlist of the networks 

that does not have the problems of metallic nanotubes is examined through 

simulation to identify appropriate densities. The conducting channel of FETs is 

created by depositing CNTs on top of the oxide layer, while the contact is 

implemented on the back of the substrate. This design can be used in CNTFETs 

for application to DNA sensing systems in aqueous solutions[26] . In [10], the 

continuity and charge equations are solved self-consistently, and long-channel 

CNTFETs are characterized numerically. By applying filed-dependent mobility, 

the accuracy of simulation is increased. Additionally, in Ref. [10], the 

dependence of current values on tube diameters in CNTFETs is thoroughly 

evaluated.  

Based on the algorithms introduced in the literature for CNTFET modeling, 

neural network has many advantages because of fast convergence. Up to now, 

these algorithms are constructed randomly, so their structures are not optimum 

and as fast as possible. To address this problem, the present study investigates a 

new ANN-based approach for CNTFET modeling. Despite their simplicity, 

single-layer feedforward networks are recognized as universal approximators of 

nonlinear systems. Their popularity is due to the direct complex nonlinear 

mapping from the input space to the output. A linear combination of RBFs, 

including inputs and neuron parameters, yields the network output. Incremental 

construction of the RBF algorithm reduces the network size significantly. To 

ensure the optimal radii for incremental neurons, a modified version of the 
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simplex method known as the simple optimization algorithm is used.  

The innovations of the present research are as follows. 1) For properly 

determining the center of a newly added neuron, the proposed algorithm 

replaces the conventional random procedure by a purposeful one. This reduces 

the network size significantly and leads to faster error convergence while 

preserving accuracy. 2) The proposed algorithm also optimizes the radius of the 

added neurons using the modified Nelder-Mead simplex algorithm. In this way, 

the inefficiency of the original algorithm and problem-solving complexities are 

reduced. 

The organization of the rest of this article is as follows. The CNT-MOSFET 

modeling and the Green’s function for carrier transport calculations are 

presented in Section 2. Then, state estimation in smart grids is presented in 

Section 2 by focusing on definitions, assumptions, formulation, and 

optimization algorithms. Section 3 discusses simulation results involving the 

case study, criteria, and simulation results. Section 4 presents the concluding 

remarks. 

2.  CNTFET AND GREEN’S FUNCTION FORMALISM  

Figure 1 shows the structure of the device used in the present study. The 

modeling parameters of the device are the diameter of the nanotube d, the gate 

dielectric thickness tox, gate insulator dielectric constant k, source Fermi level Ef, 

drain control parameter αd, and gate control parameter αg. Environmental 

variables include the temperature T and the starting/ending values of the voltage 

sweeps, which have recently been added to allow the model to more accurately 

simulate non-optimal CNTFET devices.  

The electron charge, Qn, is almost independent of Vds and can be obtained 

based on MOS electrostatics as follows: 

 
 Fig. 1. Structure of CNT-MOSFET  
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                         (1) 

The electron density at equilibrium at the barrier top can be written as 

                     (2) 

where f(E-Ef) and D(E) denote the equilibrium Fermi function and the local 

state density at the barrier top. 

The drain current can be calculated from 

                    (3) 

where J(E) denotes the current density of state. This device can be simulated 

based on the NEGF formalism using the self-consistent solutions of the 

Schrödinger and Poisson equations [27]. Indeed, non-equilibrium nanoscale 

systems can be ideally simulated using NEGF formalism [28, 29]. The NEGF-

based solution of the Schrödinger equation can be used to determine the charge 

on CNT surface and the density of states [30]. Then, the solution of Poisson 

equation and the calculated charge give the new electrostatic potential. 

3.   INCREMENTAL CONSTRUCTION OF RBF NETWORK 

Artificial neural networks, such as single-layer feedforward networks, are 

used as comprehensive estimators. Despite their simplicity, single-layer 

feedforward networks provide a direct complex nonlinear mapping from the 

inputs to linear outputs. Figure 2 depicts the three-layer structure of an RBF 

network with a single output. The input layer includes N input samples, each 

with dimension D. Moreover, H activation functions, each in direct relationship 

with the input samples, are included in the hidden layer.  In this study, activation 

functions are considered to be Gaussian functions of the form[31]: 

  
Fig. 2. RBF network for state estimation 
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                                                               (4) 

where 𝜎𝑚 and 𝑐𝑚 are, respectively, the center and radius of the mth 

activation function. Network output is a linear combination of activation 

function outputs in the hidden layer multiplied by their weights. In fact, output 

weights are the unknowns of the minimization function. The output function can 

be given as follows: 

                                                             (5) 

where 𝜔𝑚 is the hidden node’s output weight. The model employs the SSE 

method to minimize the errors while training the network parameters. The 

objective function is defined as follows: 

                                                          (6) 

The aim is to train the neural networks with X(D,N) as inputs and Y(1,N) as 

outputs of the network. In the trained sample set, at instant k, the network can 
produce a new output yk with the dimension of (1,1) for the set of input Xk with 

the dimension of (D,1). For multiple outputs, it is possible to convert the main 

problem into problems with single output while training a separate RBF network 
for every output. 

A.  Optimization 

For the training purposes, three parameters are needed to be adjusted, namely 

𝜔𝑚, 𝜎𝑚, and 𝑐𝑚. There are various algorithms to determine these parameters and 

to train the RBF network. One option is to choose neuron centers and their radii 

randomly and then calculate the output weights through the pseudo-inverse 

method, which results in a massive training network. Another option is to 

categorize samples and choose their centers as the node centers, which may 

result in local optimization. Another approach is to use the supervised learning 

method to choose the three parameters either by a derivative or directly. The 

present study uses an incremental pseudo-gradient algorithm because this 

method is not only a universal approximator but it can also work with a wide 

range of continuous and discontinuous data as well as derivative and non-

derivative functions. It is proven in [32] that for every bounded piecewise non-

constant continuous function  in RBF incremental nodes, for any 

randomly generated series of functions , and for any continuous target 

function xi,  holds with probability one if 
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where 𝑒𝑚−1 is the output error before adding the mth node, and 〈 〉 represents 

the dot product of two vectors. 

In this paper, besides calculating the weight of the incremental output node in 

accordance with the incremental algorithm, the center of each recently added 

neuron is selected as explained in a scenario in Ref. [31] (see the previous step). 

This ensures the proper selection of the center and the minimum number of 

hidden layer neurons. Then, the activation function radius is added and 

optimized.  

Simplex optimization is one of the most popular optimization algorithms for 

two reasons: first, it provides a direct calculation without derivation. Second, it 

is simple and efficient for small-scale problems[33]. 

Basically, this algorithm defines a geometrical structure with (n+1) vertices, 

where n denotes the number of the optimization problem variables. In every 

step, the worst vertex is replaced by a new vertex. The worst vertex in terms of 

optimization function value is reflected through the center of other vertices.   

A new geometric shape is formed corresponding to the new function value. 

This process is repeated until an optimized geometric shape contraction and 

reflection. Although the method is much simpler to calculate than the derivative-

based ones, some errors may occur when calculating large underived data sets. 

This may lead to a local minimum, and therefore, a reduction in the reliability of 

the method [34]. 

To overcome this problem, a modified version of the simplex algorithm is 

used in this research. Therefore, an extra vertex is used in the basic algorithm 

 
Fig. 3.  Diagram of the modified simplex algorithm  
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to resolve the local minimum issue and to move towards global optimization. 

The required steps are summarized as follows:  

 Formation of a geometric shape with (n + 1) random vertices for a 

function with n variables 

 Formation of an extra vertex with coordinates taken from the diagonal 

elements of the nth leading vertex  

 Approximating the gradient at the extra vertex in accordance with other 

vertices and calculating the reflection point relative to the best point 

 Continuing using the basic algorithm. 

Figure 3 shows the diagram of this algorithm; the full details of the algorithm 

are presented in Ref. [35]. After choosing the neuron center and calculating the 

optimal radius, the output weight of the activation function is computed based 

on equation (7). The last phase in the training procedure is to check the SSE 

index, for either stopping or repeating the procedure until reaching an 

appropriate accuracy. 

4. SIMULATION RESULTS 

A. Case Study 

In the present study, an RBF network is constructed (see Fig. 2) to relate the 

input vector Xk to the output value yk. The input vector includes d, tox, k, Ef, αd, 

αg, as well as Vgs voltage of gate-source and drain-source voltage Vds. The 

output is dedicated to the drain current of CNT-MOSFET Id. The parameter 

ranges and standard values are summarized in Table 1.  

TABLE 1 

 CNTFET STRUCTURAL PARAMETERS VALUES USED IN SIMULATION 

Parameter Min. Max. Standard value 

Oxide thickness, tox, nm  1 30 8 

Nanotube diameter, d, nm 0.4 15 1.6 

Dielectric constant, k  1 40 20 

Series resistance, Rs, ohm 0 10000 0 

drain control parameter, αd 0.001 0.1 0.35 

Source Fermi level, Ef -0.01 -0.5 -0.32 

Gate control parameter, αg 0.5 1 0.88 

Temperature, T, Kelvin 100 450 300 
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Data samples for training the network are created using the CNTFET 

environment. To train the RBF network, about 24000 data samples are obtained 

by the simulation of CNT-MOSFET using CNTFETToy software developed at 

Purdue University. When a parameter is varied, other parameters are kept at 

their standard values. Output curves in terms of the input parameters are plotted 

in Figs. 4 and 5. About 70 percent of data created by CNTFETToy is intended to 

train RBF network and the remainder is used for testing and validation. Root 

mean square error of the training process versus time is plotted in Fig. 6.  

improvement in the accuracy of the proposed algorithm in comparison with 

the NEGF one. Mean absolute error is formulated as follows: 

 

 
Fig. 4. Current versus the nanotube diameter changes ranging from 0.4 to 16 nm 

  
Fig. 5. Current versus the oxide thickness changes ranging from 1 to 30 nm 

  
Fig. 6. Boxplot of modeling error using RBF network 
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                                                                                (8) 

Root mean squared error is formulated as follows: 

                                                                       (9) 

The simulation results of drain current versus drain and gate voltages based on 

the proposed algorithm are plotted in Figs. 7 and 8, respectively. Moreover, a 

comparison is made between these results and those of the NEGF method. In 

Fig. 7a, for a fast and accurate modeling of CNTFET characteristics, an 

incremental step of 0.1 is chosen in the RBF network structure for the sigmoid 

function. For faster but less accurate modeling, the selected step is equal to 0.2 

in Fig. 7b. Although a reduction in training step leads to a larger simulator 

network, the accuracy is improved considerably while the response time 

increment is negligible. Figure 8 shows that the RBF network has simulated the 

I-V curve of CNTFET with high precision. 

B. Computational Time  

As an effective criterion, the computational time in training and testing phases 

of the proposed algorithm is compared with that of the NEGF method (Table 2). 

   
Fig. 7. Id-Vds characteristics with training steps of 0.1 and 0.2. 

 
Fig. 8. Id-Vgs characteristics of CNTFET 
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TABLE 2. 

COMPUTATIONAL TIME AND RMSE 

Model CPU time-train 

(s) 

Neurons CPU time-test 

(s) 

RMSE  

NEGF -- -- 1.2 ---  

RBF1 0.19 4-21 0.01 16*10-10  

RBF2 4 8-137 0.029 1*10-12  

 

For 0.1 steps of sigmoid function, the proposed algorithm reduces the CPU time 

by 41 times (0.29 s), while the RMSE is only 1*10-12. For the second structure 
of the RBF network with 0.2 steps, the CPU time is 0.01 s, which means 120 

times faster performance compared to the NEGF method with an RMSE of 

16*10-10. Therefore, both structures are suitable for fast applications.  

5. CONCLUSION 

In this study, a new structure of RBF network was proposed for CNTFET 

modeling. Incremental construction with simple but non-derivative optimization 

algorithm leads to fast and accurate simulations that justify the use of the RBF 

network as a universal approximator and the framework of the proposed 

algorithm. For fast and accurate online simulation of CNTFETs in practical 

applications, a purposeful and optimal incremental construction was used for the 

RBF network to guarantee the minimum size of the estimator network. 

Moreover, the output weights were adjusted using the pseudo-inverse method, 

and the centers and radii of all newly added neurons were optimized via the 

modified version of the simplex algorithm to improve the performance. 

According to the simulation results, the proposed algorithm gives accurate 

results and reduces the computational time considerably compared to the 

conventional NEGF method.  
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