Role of Critical Processing Parameters on Fundamental Phenomena and Characterizations of DC Argon Glow Discharge

Document Type : Articles

Authors

1 1Assistant Professor, Department of Electrical and Computer Engineering, Jundi-Shapur University of Technology

2 2Assistant Professor, Department of Electrical and Computer Engineering, Jundi-Shapur University of Technology

Abstract

Given the significance of carefully analyzing
the critical range for processing parameters in a
sputtering system prior to experiments, as well as their
effect on the quality of the deposited thin film, this
crucial subject has been simulated and researched in this
research. Argon glow discharge conditions were obtained
by altering essential processing factors such as electrode
spacing, working pressure, and DC voltage delivered to
the electrodes. The effect of changing these processing
parameters on the potential difference and electric field
profiles, ion- and electron-density, ion- and electronkinetic
energy, and cross-section of fundamental
processes has been investigated to study the deposition
rate and microstructural characteristics of thin films.
Furthermore, the cross-section of fundamental ions-andelectron
collision processes like ionization, elastic
scattering, excitation, and charge exchange has been
investigated.

Keywords


[1] A.J Wolf, F.JJ Peeters, P.WC Groen, W.A Bongers, M.CM van de Sanden. CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms. J. Phys. Chem. C. 124(31) (2020) 16806–16819. Available: https://doi.org/10.1021/acs.jpcc.0c03637
[2] Rafal Chodun, Lukasz Skowroński, Lukasz Skowroński, Sebastian Okrasa, Sebastian Okrasa, Krzysztof Zdunek. Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique. Applied Surface Science. 466 (2019) 12-18. Available: https://doi.org/10.1016/j.apsusc.2018.10.003
[3] Shahram Rafiee Rafat, Zahra Ahangari, Mohammad Mahdi Ahadian. Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures. 6(2) (2021) 75-90. Available: https://doi.org/10.30495/JOPN.2021.28208.1224
[4] A. Kosarian, A. Keramatzadeh, M. Shakiba, H. Kaabi, E. Farshidi. Improvement of electrical and optical properties of thin ITO films by modifying electrode spacing in DC magnetron sputtering. Tabriz Journal of Electrical Engineering. 50(1) (2020) 351-359.
Available: https://tjee.tabrizu.ac.ir/article_10716.html?lang=en
[5] Homa hashemi madani; Mohammad Reza Shayesteh; Mohammad Reza Moslemi. A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures. 6(1) (2021) 71-86.
Available: https://doi.org/10.30495/JOPN.2021.4541
[6] C. V. Budtz-Jorgensen. Studies of Electrical Plasma Discharges. Ph.D thesis (2001) Aarhus University of Denmark. Available: https://phys.au.dk/fileadmin/site_files/publikationer/phd/Casper_Budtz Joergensen.pdf
[7] A. Kosarian, M. Shakiba, E. Farshidi. Role of sputtering power on the microstructural and electro-optical properties of ITO thin films deposited using DC sputtering technique. IEEJ Transaction on Electrical and Electronic Engineering 13 (2017) 27–31. Available: https://doi.org/10.1002/tee.22494
[8] A von Keudell, V Schulz-von der Gathen. Foundations of low-temperature plasma physics-an introduction. Plasma Sources Science and Technology. 26 (2017) 113001.
Available: https://doi.org/10.1088/1361-6595/aa8d4c
[9] Jon Tomas Gudmundsson, Ante Hecimovic. Foundations of DC plasma sources. Plasma Sources Science and Technology. 26 (2017) 123001. Available: https://doi.org/10.1088/1361-6595/aa940d
[10] Francesco Taccogna, Giorgio Dilecce. Non-equilibrium in low-temperature plasmas. Plasma Sources Science and Technology. 70 (2016) 251. Available: https://doi.org/10.1140/epjd/e2016-70474-0
[11] Bahareh Boroomand Nasab, Abdolnabi Kosarian, Navid Alaei Sheini. Effect Of Zinc Oxide RF Sputtering Pressure on the Structural and Optical Properties of ZnO/PEDOT:PSS Inorganic/Organic Heterojunction. Journal of Optoelectronical Nanostructures. 4(3) (2019) 33-46. Available: https://dorl.net/dor/20.1001.1.24237361.2019.4.3.3.5
[12] H. Y. Kim, M. Gołkowski, C. Gołkowski, P. Stoltz, M. B. Cohen, M. Walker. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges. Plasma Sources Science and Technology. 27 (2018) 102145.
Available: https://doi.org/10.1088/1361-6595/aac0e5
[13]V.Rajagopal Reddy, Chel-Jong Choi. Microstructural, chemical and electrical characteristics of Au/magnetite (Fe3O4)/n-GaN MIS junction with a magnetite interlayer. Vacuum. 164 (2019) 233-241.
Available: https://doi.org/10.1016/j.vacuum.2019.03.025
[14] J Reece Roth, Jozef Rahel, Xin Dai, Daniel M Sherman. The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications. Journal of Physics D: Applied Physics. 38 (2005) 555.
Available: https://doi.org/10.1088/0022-3727/38/4/007
[15] H Y Kim, M Gołkowski. Optimal waveforms for capacitive coupled ionization in nanosecond plasma discharges. Plasma Sources Science and Technology. 27 (2018)105015.
Available: https://doi.org/10.1088/1361-6595/aae5c2
[16] Chet Nieter, John R.Cary. VORPAL: a versatile plasma simulation code. Journal of Computational Physics. 196 (2004) 448-473.
Available: https://doi.org/10.1016/j.jcp.2003.11.004
[17] F. Robicheaux, James D. Hanso. Simulation of the Expansion of an Ultracold Neutral Plasma. Phys. Rev. Lett. 88 (2002) 055002. Available: https://doi.org/10.1103/PhysRevLett.88.055002
[18] C.V. Budtz-Jørgensen, J. Bøttiger, P.K ringhøj. Energy spectra of particles bombarding the cathode in glow discharges. Vacuum. 56 (2000) 9-13
Available: https://doi.org/10.1016/S0042-207X(99)00160-8
[19] C.V. Budtz-JørgensenJ. BøttigerP. Kringhøj. Energetic ion bombardment of the grounded anode in pulsed DC-glow discharges. Surface and Coatings Technology. 137 (2001) 104-110.
Available: https://doi.org/10.1016/S0257-8972(00)01090-2
[20] Sankar Moni Borah. Direct Current Magnetron Glow Discharge Plasma Characteristics Study for Controlled Deposition of Titanium Nitride Thin Film. Journal of Materials. (2013) 852859. Available: http://dx.doi.org/10.1155/2013/852859
[21] M. Shakiba, A. Kosarian, E. Farshidi. Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J Mater Sci: Mater Electron. 28 (2016) 787–797. Available: https://doi.org/10.1007/s10854-016-5591-1
[22] J. L. Perry. Effects of sputter deposition parameters on stress in tantalum films with applications to chemical mechanical planarization of copper. Ph.D Thesis. Rochester Institute of Technology. 2004. Available: https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=7491&context=theses
[23] Iuliana Stoica, Magdalena Aflori, Emil Ghiocel Ioanid, Camelia Hulubei. Effect of oxygen plasma treatment and gold sputtering on morphological and local mechanical properties of copolyimide/gold micropatterned structures. Surface and Interface Analysis. 50 (2017)154-162. Available: https://doi.org/10.1002/sia.6352
[24] Seyyed Reza Hosseini; Mahsa Bahramgour; Nagihan Delibas; Aligholi Niaei. A simulation study around investigating the effect of polymers on the structure and performance of a perovskite solar cell. Journal of Optoelectronical Nanostructures. 6(1) (2022) 37-50.
Available: https://doi.org/10.30495/JOPN.2022.29720.1252
[25] Yi-Li Pan, Toshihiko Noda, Kiyotaka Sasagawa, Takashi Tokuda, Jun Ohta. Sputtering condition optimization of sputtered IrOx and TiN stimulus electrodes for retinal prosthesis. IEEJ Transaction on Electrical and Electronic Engineering. 8 (2013) 310-312. Available: https://doi.org/10.1002/tee.21860
[26] J. Hammel, J. Verboncoeur. DC Discharge Studies using PIC-MCC. Repport technique. PTSG Berkeley. 2004. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.6929&rep=rep1&type=pdf
[27] J. P. Verboncoeur. Simultaneous Potential and Circuit Solution for 1D Bounded Plasma particle Simulation Codes. Journal of Computational Physics. 104 (1993) 321-328.
Available: https://doi.org/10.1006/jcph.1993.1034
[28] Mohsen Vaezzadeh asadi, Ghahraman Solookinejad, Heydar Izadneshan. Structural, Morphological and Optical Analysis of TiO2 Thin Films Prepared by RF Magnetron Sputtering. Journal of Optoelectronical Nanostructures. 6(4) (2021) 59-94.
Available: https://doi.org/10.30495/JOPN.2021.28681.1230
[29] D Tskhakaya, S Kuhn. Particle-in-cell simulations of the plasma-wall transition with a magnetic field almost parallel to the wall. Journal of Nuclear Materials. 313 (2003) 1119-1122.
Available: https://doi.org/10.1016/S0022-3115(02)01548-9
[30] S.S Yang, S.M Lee, F Iza, J.K Lee. Secondary electron emission coefficients in plasma display panels as determined by particle and fluid simulations. Journal of Physics D: Applied Physics. 39 (2006) 2775-2784. Available: https://doi.org/10.1088/0022-3727/39/13/021 [31] M Radmilović-Radjenović, J K Lee, F Iza, G Y Park. Particle-in-cell simulation of gas breakdown in microgaps. Journal of Physics D: Applied Physics. 38 (2005) s950-954. Available: https://doi.org/10.1088/0022-3727/38/6/027
[32] Melissa Machado Rodrigues, Cristian Padilha Fontoura, Charlene Silvestrin Celi Garcia, Sandro Tomaz Martins, João Antonio Pêgas Henriques, Carlos Alejandro Figueroa, Mariana Roesch-Ely, Cesar Aguzzoli. Investigation of plasma treatment on UHMWPE surfaces: Impact on physicochemical properties, sterilization and fibroblastic adhesion. Materials Science and Engineering: C. 102 (2019) 264-275.
Available: https://doi.org/10.1016/j.msec.2019.04.048
[33]C. K. Birdsall, A.B. Langdon. Plasma Physics via Computer Simulations. Bristol. IOP Publishing. 1991. Available: https://doi.org/10.1201/9781315275048
[34] A. Kosarian, M. Shakiba, E. Farshidi. Role of Hydrogen Treatment on Microstructural and Opto-electrical Properties of Amorphous ITO Thin Films Deposited by Reactive Gas-timing DC Magnetron Sputtering. J Mater Sci: Mater Electron. 28 (2017) 10525–10534. Available: https://doi.org/10.1007/s10854-017-6826-5
[35] E. Kawamura, C.K. Birdsall, V. Vahedi. Physical and numerical methods of speeding up particle codes and paralleling as applied to RF discharges. Plasma Sources Science and Technology. 9 (2000) 179-198.
Available: https://doi.org/10.1088/0963-0252/9/3/319