Intermolecular interaction between Al12N12 nanocage, carbon dioxide and oxygen molecules

Document Type : Articles

Authors

1 Deparetment of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran

2 Deparetment of Chemistry, Fasa Branch, Islamic Azad University, Fasa, Iran

3 Deparetment of Chemistry, College of Sciences, Yasouj University, Yasouj, Iran

Abstract

Adsorption of gaseous molecules on outer
surface of nanostructures is one of the interesting
properties. In this respect, Al12N12 inorganic system is
chosen as nanocage, while oxygen and carbon dioxide are
considered to interact with the nanocage. Two modes have
been considered in this study. Steric and relaxation
deformation densities are employed to find the nature of
chemical interaction between these two fragments and
results confirm strong steric interaction in the
intermolecular area, while the role of relaxation interaction
is not negligible. All deformation density calculations for
two models of configuration have been investigated using
the density functional theory (DFT) calculations by M06-
2X methods and 6-311++G** basis set. Interaction energy
for two models of molecules has been examined and
compared utilizing the method of computation. To get
insight into steric and attractive parts of the intermolecular
interaction, deformation density is decomposed to two
intrinsic components: kinetic energy pressure and
relaxation. Competition between these two components
has been performed in this research.

Keywords


[1] T. Niazkar, G. Shams, Z. Soltani. Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2) orthorhombic Polymorphs: DFT Study. J. Optoelectron. Nanostructures. 6 (3) (2021) 93-116.
Available: http://jopn.miau.ac.ir/article_4982.html
[2] S. Damizadeh, M. Nayeri, F. Kalantari Fotooh, S. Fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study. J. Optoelectron. Nanostructures. 5(4) (2020) 67-86.
Available: http://jopn.miau.ac.ir/article_4507.html
[3] M. Mohammadi, M. Vadi, N. Bagheri. Study of Amitriptiline Drug Adsorption on Multi Walled Carbon Nanotube (MWCNT). J. New Materials. 11(43) (2021) 70-81.
Available: http://jnm.miau.ac.ir/article_4679.html?lang=en [4] S. J. Mousavi. Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization. J. Optoelectron. Nanostructures. 5(4) (2020) 111-122. Available: http://jopn.miau.ac.ir/article_4512.html [5] A. Jahanshir. Quanto-Relativistic Background of Strong Electron-Electron Interactions in Quantum Dots under magnetic field. J. Optoelectron. Nanostructures. 6(3) (2021) 93-116. Available: http://jopn.miau.ac.ir/article_4972.html
[6] T. Ghaffary, F. Rahimi.Y. Naimi, H. Khajehazad. Study of the Spin-Orbit Interaction Effects on Energy Levels and the Absorption Coefficients of Spherical Quantum Dot and Quantum Anti-Dotunderthe Magnetic Field. J. Optoelectron. Nanostructures. 6(2) (2021) 55-74.
Available: http://jopn.miau.ac.ir/article_4769.html
[7] F. Younas, M.Y. Mehboob, K. Ayub, R. Hussain, A. Umar, M.U. Khan, Z. Irshad, M. Adnan. Efficient Cu decorated inorganic B12P12 nanoclusters for sensing toxic COCl2 gas: a detailed DFT study. Journal of Computational Biophysics and Chemistry. 20(01) (2021) 85-97. Available: https://doi.org/10.1142/S273741652150006X. [8] M. REZAEI SAMETI, H. ZANGANEH. TD-DFT, NBO, AIM, RDG AND THERMODYNAMIC STUDIES OF INTERACTIONS OF 5-FLUOROURACIL DRUG WITH PRISTINE AND P-DOPED AL12N12 NANOCAGE. PHYS. CHEM. RES. 8(3) (2020) 511-527.
Available: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=743122
[9] M.Y. Mehboob, F. Hussain, R. Hussain, A. Shaukat, Z. Irshad, M. Adnan, A. Khurshid. Designing of Inorganic Al12N12 Nanocluster with Fe, Co, Ni, Cu and Zn Metals for Efficient Hydrogen Storage Materials. Journal of Computational Biophysics and Chemistry. 20(04) (2021) 359-375. Available: https://doi.org/10.1142/S2737416521500186.
[10] A.S. Meo. 2021. Environmental Pollution and the Brain. CRC Press. Available:https://www.routledge.com/Environmental-Pollution-and-the-Brain/Meo/p/book/9781032065090
[11] S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, M.U. Khan, M. Ahmed, M. Adnan, K. Ayub. Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS omega. 5(13) (2020) 7641-7650. Available: https://doi.org/10.1021/acsomega.0c00507.
[12] M. Adnan, J.K. Lee. All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Scientific reports. 8(1) (2018) 1-10. Available: https://doi.org/10.1038/s41598-018-20296-2.
[13] S. Hussain, S.A.S. Chatha, A.I. Hussain, R. Hussain, Y.M. Mehboob, T. Gulzar, A. Mansha, N. Shahzad, K. Ayub, K. Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: a step forward toward efficient CO2 sensing materials. ACS omega. 5 (25) (2020) 15547-15556. Available: https://doi.org/10.1021/acsomega.0c01686.
[14] R. M. Pitzer. The barrier to internal rotation in ethane. J. phys. Chem A. 113(45) (2009) 12343-12345. Available: https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Russell+M.++Pitzer
[15] W.H. Schwarz, P. Valtazanos, K. Ruedenberg. Electron difference densities and chemical bonding. Theoretica chimica acta. 68(6) (1985) 471-506. Available: https://doi.org/10.1007/BF00527670.
[16] W.H.E. SCHWARZ, K. RUEDENBERG, L. MENSCHING. CHEMICAL DEFORMATION DENSITIES. 1. PRINCIPLES AND FORMULATION OF QUANTITATIVE DETERMINATION. J. AM. CHEM. SOC. 111(18) (1989) 6926-6933. Available: https://doi.org/10.1021/ja00200a006. [17] T. Gohda, M. Ichikawa, T. Gustafsson, I. Olovsson. X-ray study of deformation density and spontaneous polarization in ferroelectric NaNO2. Acta Crys. Sec. B: Structural Science. 56(1) (2000) 11-16. Available: DOI: 10.1107/s010876819901054x.
[18] G. Will. Electron deformation density in titanium diboride chemical bonding in TiB2. J. Solid State Chem. 177(2) (2004) 628-631.
Available: https://doi.org/10.1016/j.jssc.2003.04.008.
[19] J. Gu, J. Wang, J. Leszczynski. H− Bonding Patterns in the Platinated Guanine− Cytosine Base Pair and Guanine− Cytosine− Guanine− Cytosine Base Tetrad: an Electron Density Deformation Analysis and AIM Study. J. Am. Chem. Soc. 126(39) (2004) 12651-12660. Available: https://doi.org/10.1021/ja0492337.
[20] F. Ghanavati, S.M. Azami. Topological analysis of steric and relaxation deformation densities. Molecular Physics. 115(6) (2017) 743-756.
Available: https://doi.org/10.1080/00268976.2017.1281457.
[21] K. Kiewisch, G. Eickerling, M. Reiher, J. Neugebauer. Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. J. Chem. Phys. 128 (4) (2008) 044114.
Available: https://doi.org/10.1063/1.2822966.
[22] M. Parafiniuk, M.P. Mitoraj. On the origin of internal rotation in ammonia borane. J. Mol. model. 20(6) (2014) 1-9. Available: doi: 10.1007/s00894-014-2272-y. [23] M. P. Mitoraj , M. Parafiniuk, M. Srebro, M. Handzlik, A. Buczek , A. Michalak. Applications of the ETS-NOCV method in descriptions of chemical reactions. J Mol Model. 17(9) (2011) 2337-2352. Available: DOI: 10.1007/s00894-011-1023-6.
[24] S. Fakhraee, M. Azami. Orbital representation of kinetic energy pressure. J. Chem. Phys. 130 (2009) 084113.
Available: https://doi.org/10.1063/1.3077026.
[25] J.T. Su, W.A. Goddard. The dynamics of highly excited electronic systems: Applications of the electron force field. J. Chem. Phys. 131 (2009) 244501.
Available: https://doi.org/10.1063/1.3272671.
[26] K. Ruedenberg. The Physical Nature of the Chemical Bond, Rev. Mod. Phys. 34 (1962) 326. Available: https://doi.org/10.1103/RevModPhys.34.326
[27] H. Tokiwa, H. Ichikawa. Origin of steric hindrance in ethane. Int. J. Quant. Chem. 50 (2) (1994) 109-112.
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560500204
[28] S.G. Wang, Y. X. Qiu, W.H.E. Schwarz. Bonding or Nonbonding? Description or Explanation? “Confinement Bonding” of He@adamantane, chemistry A European journal. 15(24) (2009) 6032-6040. Available: https://doi.org/10.1002/chem.200802596.
[29] V. Weissopf. Of Atoms, Mountains, and Stars: A Study in Qualitative Physics. SCIENCE. 187 (4177) (1975) 605-612.
Available: https://www.science.org/doi/10.1126/science.187.4177.6.
[30] F. Weinhold and C.R. Landis, Valency and bonding: a natural bond orbital donor-acceptor perspective (Cambridge University Press, Cambridge, p 37, 2003).
Available: https://scholar.google.com/scholar?q=F.+Weinhold+and+C.R.+Landis,+Valency+and+bonding:&hl=fa&as_sdt=0&as_vis=1&oi=scholart
[31] A.I. Ermakov, A.E. Merkulov, A.A. Svechnikova. Basis Set Orbital Relaxation in Atomic and Molecular Hydrogen Systems. J. Struct. Chem. 45(6) (2004) 923-928. Available: DOI:10.1007/s10947-005-0080-z
[32] A.D. Mclean. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72 (1980) 5639.
Available: https://doi.org/10.1063/1.438980.
[33] Y. Zhao, D.G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120 (2008) 215-241. Available: https://doi.org/10.1007/s00214-007-0310-x.
[34] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, revision A.02. Gaussian Inc, Pittsburgh, PA, 2009. Available: www.gaussian.com
[35] S.M. Azami, Densitizer Ver. 1.1.48 (http://densitizer.orbital.xyz), 2019. Available: http://densitizer.orbital.xyz
[36] Gaussian, Inc (2000-2008) GaussView 5.0. Gaussian, Inc. copyright (c) Semichem, Inc. Available: www.gaussian.com
[37] A. J. Stone, The theory of intermolecular forces. (Oxford University Press, Oxford.1996).Available: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199672394.001.0001/acprof-9780199672394
[38] S. Sedighi, M. T. Baei, M. Javan, J. C. Ince, A. Soltani, M.H. Jokar, S. Tavassoli. Adsorption of sarin and chlorosarin onto the Al12N12 and Al12P12 nanoclusters: DFT and TDDFT calculations. Surf Interface Anal. 52(11) (2020) 725-734. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.6861
[39] I. Silaghi-Dumitrescu, F. Lara-Ochoa, I. Haiduc. A12B12 (A = B,Al; B = N, P) fullerene-like cages and their hydrogenated forms stabilized by exohedral bonds. An AM1 molecular orbital study. J. Mol. Struct. (THEOCHEM). 370(1) (1996) 17-23.
Available: https://fdocuments.in/document/a12b12-a-bal-b-np-46-fullerene-like-cages-and-their-hydrogenated-forms.html [40] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe. Potential of AlN nanostructures as hydrogen storage materials. ACS Nano. 3(3) (2009, March) 621-626. Available: https://doi.org/10.1021/nn800815e
[41] M. Saeedi, M. Anafcheh, R. Ghafouri, N.L. HadipourL. A computational investigation of the electronic properties of Octahedral AlnNn and AlnPn cages (n = 12, 16, 28, 36, and 48). Struct Chem. 24(2) (2013) 681-689.
Available: https://link.springer.com/article/10.1007/s11224-012-0119-7 .