[1] W.M. Haynes, CRC handbook of chemistry and physics, 95 ed., CRC press, 2014. Available: https://doi.org/10.1201/b17118
[2] A.E. Galashev, Molecular-dynamic modeling of ultradisperse water in the earth atmosphere. High Temp., 48 (4) (2010) 518-526. Available: https://doi.org/10.1134/S0018151X10040097
[3] K.M. Manoj, V. Soman, V.D. Jacob, A. Parashar, D.A. Gideon, M. Kumar, A. Manekkathodi, S. Ramasamy, K. Pakshirajan, N.M. Bazhin, Chemiosmotic and murburn explanations for aerobic respiration: predictive capabilities, structure-function correlations and chemico-physical logic. ARCH BIOCHEM BIOPHYS., 676 (2019) 108128. Available: https://doi.org/10.1016/j.abb.2019.108128
[4] R. Reed, Solar inactivation of faecal bacteria in water: the critical role of oxygen, Lett. Appl. Microbiol., 24 (4) (1997) 276-280. Available: https://doi.org/10.1046/j.1472-765X.1997.00130.x
[5] D.B. Papkovsky, G.V. Ponomarev, W. Trettnak, P. O'Leary, Phosphorescent complexes of porphyrin ketones: optical properties and application to oxygen sensing. Anal. Chem., 67 (22) (1995) 4112-4117. Available: https://doi.org/10.1021/ac00118a013
[6] W. Yang, H. Wang, X. Zhu, L. Lin, Development and application of oxygen permeable membrane in selective oxidation of light alkanes. J. Top. Catal., 35 (1-2) (2005) 155-167. Available: https://doi.org/10.1007/s11244-005-3820-6
[7] L.W. Winkler, The determination of dissolved oxygen in water. Berlin DeutChem Gas., 21 (1888) 2843-2855.
[8] K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons., vol. 30, 1992.
[9] R. Ramamoorthy, P. Dutta, S. Akbar, Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci., 38 (21) (2003) 4271-4282. Available: https://doi.org/10.1023/A:1026370729205
[10] Y. Amao, Probes and polymers for optical sensing of oxygen. Microchim. Acta., 143 (1) (2003) 1-12. Available: https://doi.org/10.1007/s00604-003-0037-x
[11] N.L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem.
C., 119 (11) (2015) 6398-6404. Available: https://doi.org/10.1021/jp513019z
[12] E. Vessally, S.A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta., 162 (2017) 505-510. Available: https://doi.org/10.1016/j.talanta.2016.10.010
[13] G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chemical reviews., 112 (10) (2012) 5317-5338. Available: https://doi.org/10.1021/cr300020c
[14] S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews., 40 (5) (2011) 2644-2672. Available: https://doi.org/10.1039/c0cs00079e
[15] S. Guo, E. Wang, Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Accounts of Chemical Research., 44 (7) (2011) 491-500. Available: https://doi.org/10.1021/ar200001m
[16] M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R. Jin, Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. Journal of the American Chemical Society., 130 (18) (2008) 5883-5885. Available: https://doi.org/10.1021/ja801173r
[17] O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, Critical size for the observation of quantum confinement in optically excited gold clusters. Journal of the American Chemical Society, 132 (1) (2010) 16-17. Available: https://doi.org/10.1021/ja907984r
[18] S.H. Yau, O. Varnavski, T. Goodson III, An ultrafast look at Au nanoclusters. Accounts of chemical research., 46 (7) (2013) 1506-1516. Available: https://doi.org/10.1021/ar300280w
[19] P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science., 318 (5849) (2007) 430-433. Available: https://doi.org/10.1126/science.1148624
[20] J. Zheng, P.R. Nicovich, R.M. Dickson, Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem., 58 (2007) 409-431. Available:
https://doi.org/10.1146/annurev.physchem.58.032806.104546
[21] I. Heidari, S. De, S. Ghazi, S. Goedecker, D. Kanhere, Growth and Structural Properties of Mg N (N= 10–56) Clusters: Density Functional Theory Study. J. Phys. Chem A., 115 (44) (2011) 12307-12314. Available: https://doi.org/10.1021/jp204442e
[22] S. Janecek, E. Krotscheck, M. Liebrecht, R. Wahl, Structure of Mg n and Mg n+ clusters up to n= 30. Eur. Phys. J. D., 63 (3) (2011) 377-390. Available: https://doi.org/10.1140/epjd/e2011-10694-2
[23] A. Köhn, F. Weigend, R. Ahlrichs, Theoretical study on clusters of magnesium. Phys. Chem. Chem. Phys., 3 (5) (2001) 711-719. Available: https://doi.org/10.1039/b007869g
[24] A. Lyalin, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size. Phys. Rev. A., 67 (6) (2003) 063203-063215. Available: https://doi.org/10.1103/PhysRevA.67.063203
[25] M. Monteverde, M. Nunez-Regueiro, N. Rogado, K. Regan, M. Hayward, T. He, S. Loureiro, R.J. Cava, Pressure dependence of the superconducting transition temperature of magnesium diboride. Science., 292 (5514) (2001) 75-77. Available: https://doi.org/10.1126/science.1059775
[26] S. Er, G.A. de Wijs, G. Brocks, Tuning the hydrogen storage in magnesium alloys. J. Phys. Chem. Lett., 1 (13) (2010) 1982-1986. Available: https://doi.org/10.1021/jz100386j
[27] R. Nevshupa, J.R. Ares, J.F. Fernández, A. del Campo, E. Roman, Tribochemical decomposition of light ionic hydrides at room temperature. J. Phys. Chem. Lett., 6 (14) (2015) 2780-2785. Available: https://doi.org/10.1021/acs.jpclett.5b00998
[28] G. Barcaro, R. Ferrando, A. Fortunelli, G. Rossi, Exotic supported copt nanostructures: from clusters to wires. J. Phys. Chem. Lett., 1 (1) (2009) 111-115. Available: https://doi.org/10.1021/jz900076m
[29] L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, X.-C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature., 528 (7583) (2015) 539-543. Available: https://doi.org/10.1038/nature16445
[30] J. Yoo, A. Aksimentiev, Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett., 3 (1) (2011) 45-50. Available:
https://doi.org/10.1021/jz201501a
[31] J. Akola, K. Rytkönen, M. Manninen, Metallic evolution of small magnesium clusters. Eur. Phys. J. D., 16 (1) (2001) 21-24. Available: https://doi.org/10.1007/s100530170051
[32] E.R. Davidson, R.F. Frey, Density functional calculations for Mg n+ clusters. J. Chem. Phys., 106 (6) (1997) 2331-2341. Available: https://doi.org/10.1063/1.473096
[33] X. Gong, Q. Zheng, Y.-z. He, Electronic structures of magnesium clusters, Phys. Lett. A., 181 (6) (1993) 459-464. Available: https://doi.org/10.1016/0375-9601(93)91150-4
[34] V. Kumar, R. Car, Structure, growth, and bonding nature of Mg clusters, Phys. Rev. B., 44 (15) (1991) 8243-8255. Available: https://doi.org/10.1103/PhysRevB.44.8243
[35] X. Xia, X. Kuang, C. Lu, Y. Jin, X. Xing, G. Merino, A. Hermann, Deciphering the structural evolution and electronic properties of magnesium clusters: an aromatic homonuclear metal Mg17 cluster. J. Phys. Chem. A., 120 (40) (2016) 7947-7954. Available: https://doi.org/10.1021/acs.jpca.6b07322
[36] M.R. Dehghan, S. Ahmadi, Z.M. Kotena, Adsorption behaviors of carbon monoxide (CO) over aromatic magnesium nanoclusters: a DFT study. Structural Chemistry., 32 (1) (2021) 1949-1960. Available: https://doi.org/10.1007/s11224-021-01770-6
[37] S. Zhuiykov, In situ FTIR study of oxygen adsorption on nanostructured RuO 2 thin-film electrode. Ionics., 15 (4) (2009) 507-512. Available: https://doi.org/10.1007/s11581-008-0294-0
[38] F. Gobal, R. Arab, M. Nahali, A comparative DFT study of atomic and molecular oxygen adsorption on neutral and negatively charged PdxCu3− x (x= 0–3) nano-clusters. Journal of Molecular Structure: THEOCHEM., 959 (1-3) (2010) 15-21. Available: https://doi.org/10.1016/j.theochem.2010.07.042
[39] S. Tan, Y. Ji, Y. Zhao, A. Zhao, B. Wang, J. Yang, J. Hou, Molecular oxygen adsorption behaviors on the rutile TiO2 (110)-1× 1 surface: an in situ study with low-temperature scanning tunneling microscopy. J. Am. Chem. Soc., 133 (6) (2011) 2002-2009. Available: https://doi.org/10.1021/ja110375n
[40] F. Tielens, J. Andrés, T.-D. Chau, T.V. de Bocarmé, N. Kruse, P. Geerlings, Molecular oxygen adsorption on electropositive nano gold tips. Chem. Phys. Lett., 421 (4-6) (2006) 433-438. Available:
https://doi.org/10.1016/j.cplett.2006.02.006
[41] F. Tielens, J. Andrés, M. Van Brussel, C. Buess-Hermann, P. Geerlings, DFT study of oxygen adsorption on modified nanostructured gold pyramids. J. Phys. Chem. B., 109 (16) (2005) 7624-7630. Available: https://doi.org/10.1021/jp0501897
[42] B. Kang, H. Liu, J.Y. Lee, Oxygen adsorption on single layer graphyne: a DFT study. Phys. Chem. Chem. Phys., 16 (3) (2014) 974-980. Available: https://doi.org/10.1039/C3CP53237B
[43] H.A. Al-Abadleh, V. Grassian, FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir., 19 (2) (2003) 341-347. Available: https://doi.org/10.1021/la026208a
[44] J.-K. Chen, S.-M. Yang, B.-H. Li, C.-H. Lin, S. Lee, Fluorescence quenching investigation of methyl red adsorption on aluminum-based metal–organic frameworks. Langmuir., 34 (4) (2018) 1441-1446. Available: https://doi.org/10.1021/acs.langmuir.7b04240
[45] X.-J. Kuang, X.-Q. Wang, G.-B. Liu, A density functional study on the adsorption of hydrogen molecule onto small copper clusters. J. Chem. Sci., 123 (5) (2011) 743-754. Available: https://doi.org/10.1007/s12039-011-0130-3
[46] Q.-M. Ma, Z. Xie, J. Wang, Y. Liu, Y.-C. Li, Structures, binding energies and magnetic moments of small iron clusters: A study based on all-electron DFT. Solid State Commun., 142 (1-2) (2007) 114-119. Available: https://doi.org/10.1016/j.ssc.2006.12.023
[47] R. Hussain, A.I. Hussain, S.A.S. Chatha, A. Mansha, K. Ayub, Density functional theory study of geometric and electronic properties of full range of bimetallic AgnYm (n+ m= 10) clusters. J. Alloys Compd., 705 (2017) 232-246. Available: https://doi.org/10.1016/j.jallcom.2017.02.008
[48] S.F. Matar, DFT study of hydrogen instability and magnetovolume effects in CeNi. Solid State Sci., 12 (1) (2010) 59-64. Available: https://doi.org/10.1016/j.solidstatesciences.2009.10.003
[49] M.R. Dehghan, S. Ahmadi, Z.M. Kotena, M. Niakousari, A computational study of N2 adsorption on aromatic metal Mg16M;(M= Be, Mg, and Ca) nanoclusters. Journal of Molecular Graphics and Modelling., 105 (2021) 107862. Available: https://doi.org/10.1016/j.jmgm.2021.107862
[50] M.R. Dehghan, S. Ahmadi, Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures (M= Be, Mg, and Ca): A DFT Study. Journal of Optoelectronical Nanostructures., 6 (1) (2021) 1-20. Available:https://dorl.net/dor/20.1001.1.24237361.2021.6.1.1.3
[51] S.J. Mousavi, Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization. JOPN., 5 (4) (2020) 111-122. Available: https://dorl.net/dor/20.1001.1.24237361.2020.5.4.7.8
[52] H. Salehi, Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X= S, Se) compounds. JOPN., 3 (2) (2018) 53-64. Available: https://dorl.net/dor/20.1001.1.24237361.2018.3.2.5.8
[53] M. Askaripour Lahiji, A. Abdolahzadeh Ziabari, Ab–initio study of the electronic and optical traits of Na0. 5Bi0. 5TiO3 nanostructured thin film. JOPN., 4 (3) (2019) 47-58. Available: https://dorl.net/dor/20.1001.1.24237361.2019.4.3.4.6
[54] S.J. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals. JOPN., 2 (4) (2017) 1-18. Available: https://dorl.net/dor/20.1001.1.24237361.2017.2.4.1.1
[55] F. Weinhold, C.R. Landis, Natural bond orbitals and extensions of localized bonding concepts. CHEM EDUC RES PRACT., 2 (2) (2001) 91-104. Available: https://doi.org/10.1039/B1RP90011K
[56] F. Biegler‐König, J. Schönbohm, Update of the AIM2000‐program for atoms in molecules. J. Comput. Chem., 23 (15) (2002) 1489-1494. Available: https://doi.org/10.1002/jcc.10085
[57] Y. Fu, T. Lu, Y. Xu, M. Li, Z. Wei, H. Liu, W. Lu, Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized solar cells with near-IR light harvesting. Dyes Pigm., 155 (2018) 292-299. Available: https://doi.org/10.1016/j.dyepig.2018.03.045
[58] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision B.01, (Gaussian, Inc., Wallingford, CT, 2009).
[59] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19 (4) (1970) 553-566. Available: https://doi.org/10.1080/00268977000101561
[60] N.M. O'boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package‐independent computational chemistry algorithms. J. Comput. Chem., 29 (5) (2008) 839-845. Available:
[61] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem., 33 (5) (2012) 580-592. Available: https://doi.org/10.1002/jcc.22885
[62] K.-P. Huber, Molecular spectra and molecular structure: IV. Constants of diatomic molecules. Springer Science & Business Media., 2013.
[63] R.D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database. http://srdata. nist. gov/cccbdb. 2006. Available: http://cccbdb.nist.gov/
[64] M. Shahabi, H. Raissi, Molecular dynamics simulation and quantum chemical studies on the investigation of aluminum nitride nanotube as phosgene gas sensor. Journal of Inclusion Phenomena and Macrocyclic Chemistry., 86 (3-4) (2016) 305-322. Available: https://doi.org/10.1007/s10847-016-0664-6
[65] A. Hosseinian, E. Vessally, A. Bekhradnia, S. Ahmadi, P.D.K. Nezhad, Interaction of α-cyano-4-hydroxycinnamic acid drug with inorganic BN nanocluster: A density functional study. J Inorg Organomet Polym Mater., 28 (4) (2018) 1422-1431. Available: https://doi.org/10.1007/s10904-018-0778-y
[66] E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, K. Nejati, Selective detection of cyanogen halides by BN nanocluster: a DFT study. J. Mol. Model., 23 (4) (2017) 1-9. Available:https://doi.org/10.1007/s00894-017-3312-1
[67] K. Nejati, A. Hosseinian, E. Vessally, A. Bekhradnia, L. Edjlali, A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl. Surf. Sci., 422 (2017) 763-768. Available: https://doi.org/10.1016/j.apsusc.2017.06.082
[68] S. Ahmadi, V.M. Achari, H. Nguan, R. Hashim, Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations. J. Mol. Model., 20 (3) (2014) 1-12. Available: https://doi.org/10.1007/s00894-014-2165-0
[69] Z. Zhou, R.G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc., 112 (15) (1990) 5720-5724. Available: https://doi.org/10.1021/ja00171a007
[70] R.G. Pearson, Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem., 54 (6) (1989) 1423-1430. Available: https://doi.org/10.1021/jo00267a034
[71] W. Faust, Explosive molecular ionic crystals. Science., 245 (4913) (1989) 37-42. Available:
https://doi.org/10.1126/science.245.4913.37
[72] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 105 (26) (1983) 7512-7516. Available: https://doi.org/10.1021/ja00364a005
[73] R.G. Parr, P.K. Chattaraj, Principle of maximum hardness. J. Am. Chem. Soc., 113 (5) (1991) 1854-1855. Available: https://doi.org/10.1021/ja00005a072
[74] R.G. Pearson, Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc., 107 (24) (1985) 6801-6806. Available: https://doi.org/10.1021/ja00310a009