Y. Liu, H. Xie, Y. Xing, Optical vibration modes in multi-layer quantum dots of polar ternary mixed crystals, Physica E, 121 (2020) 114124. Available:https://doi.org/10.1016/j.physe.2020.114124
[2] A. Ghadimi, M. Ahmadzadeh, Effect of Variation of Specifications of Quantum Well and Contact Length on Performance of Inp-Based Vertical Cavity Surface Emitting Laser (VCSEL), Journal of Optoelectronical Nanostructures, 5(1) (2020) 19–34.
Available:http://jopn.miau.ac.ir/article_4031.html
[3] E. Kasapoglu, H. Sari, I. SoΜkmen, J.A. Vinasco, D. Laroze, C.A. Duque, Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots, Physica E, 126 (2021) 114461.
Available:https://doi.org/10.1016/j.physe.2020.114461
[4] M. Servatkhah, Study of RbCl quantum pseudo-dot qubits using Shannon and Laplace entropies, Optical and Quantum Electronics, 52 (2020) 126. Available:https://doi.org/10.1007/s11082-020-2229-6
[5] F. Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad, Efect of magnetic feld on energy states and optical properties of quantum dots and quantum antidots, Optical and Quantum Electronics, 53(47) (2021) 1–16.
Available:https://doi.org/10.1007/s11082-020-02695-w
[6] R. Betancourt-Riera, R. Betancourt-Riera, L.A. Ferrer-Moreno, A.D. Sañu-Ginarte, Theory of electron Raman scattering in a semiconductor core/shell quantum well wire, Physica B, 563 (2019) 93–100. Available:https://doi.org/10.1016/j.physb.2019.04.004
[7] Y. Naimi, J. Vahedi, M. R. Soltani, Effect of position-dependent effective mass on optical properties of spherical nanostructures, Optical and Quantum Electronics, 47 (2015) 2947-2956.
Available:https://doi.org/10.1007/s11082-015-0183-5
R. Yahyazadeh, Z. Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of π΄π0.3πΊπ0.7π/πΊππ Multiple Quantum Well Solar Cells, Journal of Optoelectronical Nanostructures, 5(3) (2020) 81–101. Available:http://jopn.miau.ac.ir/article_4406.html
[9] H. Bahramiyan, M. Servatkhah, Second and third harmonic generation of a hexagonal pyramid quantum dot: impurity position effect, Optical and Quantum Electronics, 47 (2015) 2747-2758. Avai`lable:https://doi.org/10.1007/s11082-015-0176-4
[10] S. Chaudhuri, Two-electron quantum dot in a magnetic field: Analytic solution for finite potential model, Physica E, 128 (2021) 114571.
Available:https://doi.org/10.1016/j.physe.2020.114571
[11] Y. Naimi, Refractive index changes of a donor impurity in spherical nanostructures: Effects of hydrostatic pressure and temperature, Phys. B, 428 (2013) 43–47.
Available:https://doi.org/10.1016/j.physb.2013.07.019
[12] H. Bahramiyan, S. Bagheri, Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect, journal of optoelectronical nanostructures, 3 (3) (2018) 79-100.
Available:https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=613953
[13] L. StevanoviΔ, N. FilipoviΔ, V. PavloviΔ, Effect of magnetic field on absorption coefficients, refractive index changes and group index of spherical quantum dot with hydrogenic impurity, Journal of Luminescence, Optical Materials, 91 (2019) 62–69.
Available:https://doi.org/10.1016/j.optmat.2019.02.049
[14] F. Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad, Study of the Spin-Orbit Interaction Effects on Energy Levels and the Absorption Coefficients of Spherical Quantum Dot and Quantum Anti-Dot under the Magnetic Field, journal of optoelectronical nanostructures, 6 (2) (2021) 55-74. Available:https://doi.org/10.30495/JOPN.2021.27965.1222
[15] M. Rezvani Jalal, M. Habibi, Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser, journal of optoelectronical nanostructures, 2 (2) (2017) 61-69.
Available:https://www.sid.ir/en/journal/ViewPaper.aspx?id=550467
[16] S. Sakiroglu, D. Gul Kilic, U. Yesilgul, F. Ungan, E. Kasapoglu, H. Sari, I. Sokmen, Intense laser field effects on the third-harmonic generation in a quantum pseudodot system, Physica B, 521 (2017) 215–220.
Available:https://doi.org/10.1016/j.physb.2017.06.071
[17] F. Hakimian, M.R. Shayesteh, M.R. Moslemi, Proposal for Modeling of FWM Efficiency of QD-SOA Based on the Pump/Probe Measurement Technique, journal of optoelectronical nanostructures, 5 (4) (2020) 49-65.
Available:http://jopn.miau.ac.ir/article_4509.html
[18] R. Khordad, M. Servatkhah, Study of entanglement entropy and exchange coupling in two-electron coupled quantum dots, Optical and Quantum Electronics, 49 (2017) 217.
Available:https://doi.org/10.1007/s11082-017-1044-1
[19] I. Karabulut, H. S ¸afak, M. Tomak, Excitonic effects on the nonlinear optical properties of small quantum dots, J. Phys. D: Appl. Phys, 41 (2008) 155104.
Available:https://doi.org/10.1088/0022-3727/41/15/155104
[20] G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E, 66 (2015) 128–132. Available:https://doi.org/10.1016/j.physe.2014.10.011
[21] M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots, Physica E, 127 (2021) 114543.
Available:https://doi.org/10.1016/j.physe.2020.114543
[22] K.L. Jahan, A. Boda, I.V. Shankar, Ch. N. Raju, A. Chatterjee, Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers, Sci Rep, 8 (2018) 5073. Available:https://doi.org/10.1038/s41598-018-23348-9
S. M. Bilankohi, M. Ebrahimzadeh, T. Ghaffary, Study of the properties of Au/Ag core/shell nanoparticles and its application, Indian Journal of Science and Technology, 8 (2015) 31-33.
Available:https://doi.org/10.17485/ijst/2015/v8iS9/68667
[24] K. Khordad, Temperature effect on the threshold frequency of absorption in a quantum pseudodot, Physica, B 406 (2011) 620-623.
Available:https://doi.org/10.1016/j.physb.2010.11.059
[25] M. Choubani, R.B. Mahrsia, L. Bouzaiene, H. Maaref, Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects, J. Luminesc, 144 (2013) 158-162.
Available:https://doi.org/10.1016/j.jlumin.2013.07.002 [26] H. Khajehazad, T. Ghaffary, M. Ebrahimzadeh, Microwave Absorption Properties of Fe2O3/Paraffin Wax Nanocomposite, Asian J. Chem., 25(13) 7651-7652, (2013).
Available:https://doi.org/10.14233/ajchem.2013.15155
[27] F. Rahmani, J. Hasanzadeh, Investigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot, journal of optoelectronical nanostructures, 3 (1) (2018) 65-78.
Available:http://jopn.miau.ac.ir/article_2824.html
[28] X.F. Yan, Q. Chen, W. Pei, J.Z. Peng, Magnetic field dependence of the electronic and optical properties of silicene quantum dots, Solid State Communications, 327 (2021) 114219.
Available:https://doi.org/10.1016/j.ssc.2021.114219
[29] Y. Naimi, A.R. Jafari, Optical properties of quantum dots versus quantum antidots: Effects of hydrostatic pressure and temperature, Journal of Computational Electronics, 13 (2014) 666-672. Available:https://doi.org/10.1007/s10825-014-0585-9
[30] E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sokmen, C.A. Duque,
Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field, Physica E, 119 (2020) 114011.
Available:https://doi.org/10.1016/j.physe.2020.114011
[31] B. ÇakΔ±r, Y. Yakar, A. Özmen, Investigation of Magnetic Field Effects on Binding Energies in Spherical Quantum Dot with Finite Confinement Potential, Chemical Physics Letters, 684 (2017) 250–256.
Available:https://doi.org/10.1016/j.cplett.2017.06.064
[32] A. Abramowitz, I. Stegun, Handbook of Mathematical Function with Formulas Graphs and Mathematical Tables, (1964), pp. 505–509. US GPO, Washington, D.C.
[33] Y. Naimi, A.R. Jafari, Oscillator strengths of the intersubband electronic transitions in the multi-layered nano-antidots with hydrogenic impurity, J. Comput. Electron, 11(2012) 414-420.
Available:https://doi.org/10.1007/s10825-012-0421-z
[34] A.R. Jafari, Y. Naimi, Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center, J. Comput. Electron, 12 (2013) 36-42.
Available:https://doi.org/10.1007/s10825-013-0432-4
[35] S. M. Bilankohi, M. Ebrahimzadeh, T. Ghaffary, M. Zeidiyam, Scattering, Absorption and Extinction Properties of Al/TiO2 Core/Shell Nanospheres, Indian Journal of Science and Technology, 8 (2015) 1-4
Available:https://doi.org/10.17485/ijst/2015/v8iS9/68665
[36] M. Servatkhah, R. Pourmand, Optical properties of a two-dimensional GaAs quantum dot under strain and magnetic field, The European Physical Journal Plus,135 (2020) 754. Available:https://doi.org/10.1140/epjp/s13360-020-00773-2