[1] A.V. Husakou, J. Herrmann. Supercontinuum generation of higher order solitons by fission in photonic crystal fibers. Phys.Rev. Lett, 87, (2001) 203901. Available: https://doi.org/10.1103/PhysRevLett.87.203901
[2] J. Herrmann et al. Experimental evidence for supercontinuum generation by fission of higher order soliton in photonic fibers. Phys. Rev. Lett, 88, (2002) 173901. Available: https://doi.org/10.1103/PhysRevLett.88.173901
[3] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonics crystal fiber. Rev. Mod. Phys. 78, (2006) 1135–1184. Available: https://doi.org/10.1103/RevModPhys.78.1135
[4] A. M. Zheltikov. supercontinuum generation by ultrashort laser pulses. Phys–Uspekhi. 49, (2006) 605–628.
Available: https://doi.org/10.3367/UFNr.0176.200606d.0623
[5] J. M. Dudley, J. R. Taylor. Ten years of nonlinear optics in photonic crystal fiber. Nature Photonics, 3, (2009) 85–90.
Available: https://doi.org/10.1038/nphoton.2008.285
[6] Q. Lu, C. Zou, D. Chen, P. Zhou, G. Wu. Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Optics Communications, Vol. 319, (2014) 141–146. Available: https://doi.org/10.1016/j.optcom.2013.12.072
[7] Z. Muhammad, J. Alam, S. Aitchison, M. Mojahedi. A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev. 8, No. 3, (2014) 394–408. Available: https://doi.org/10.1002/lpor.201300168
[8] H. A. Atwater. The Promise of Plasmonics, Scientific American. Vol. 296, No. 4, (2007) 56-63. Available: doi:10.1038/scientificamerican0907-56sp
[9] M. Dehghani, M. Hatami. Raman scattering and self‑steepening in nonlinear plasmonic waveguide pulse equation, Optical and Quantum Electronics Springer, (2020) 52:124. Available:
https://doi.org/10.1007/s11082-020-2241-x
[10] D. Rukhlenko, P. Asanka, P. Malin. Exact dispersion relation for nonlinear plasmonic waveguides. Phys. Rev. B. (2011).
Available: https://doi.org/10.1103/PhysRevB.84.113409
[11] B. Sharma, R. Frontiera, A. Henry, E. Ringe, R. P. van Duyne. SERS: materials, applications, and the future. 15, (2012) 16–25.
Available: https://doi.org/10.1016/S1369-7021(12)70017-2
[12] H. Zhao, Y. Li, G. Zhang. Study on the performance of bimetallic layer dielectric-loaded surface plasmon polariton waveguides. Journal of optics, (2011) 115501. Available: http://dx.doi.org/10.1088/2040-8978/13/11/115501
[13] R. Yang, M.A.G. Abushagur, Z. Lu. Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot. Opt. Express 16, (2008) 20142–20148. Available: https://doi.org/10.1364/OE.16.020142
[14] H. U. Yang, J. D’Archange, M. L. Sundheimer, E. Tucker, G. D. Boreman. Optical dielectric function of silver. Phys. Rev. 91, (2015) 1–11.
Available: http://dx.doi.org/10.1103/PhysRevB.91.235137
[15] G.P. Agrawal. Nonlinear Fiber Optics. Sixth ed., Academic Press, USA.
(2019). Available: https://doi.org/10.1016/B978-0-12-817042-7.00008-7