[1] M.R. Mohebbifar, Study of the quantum efficiency of semiconductor quantum dot pulsed micro-laser, Journal of Optoelectronical Nanostructures, 6 (1) (2021) 59-70. Available: http://jopn.miau.ac.ir/article_4544.html
[2] D. Karimi Moghadam, Gh. Solookinejad, Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons, Journal of Optoelectronical Nanostructures, 5 (3) (2020) 59-70. Available: http://jopn.miau.ac.ir/article_4404.html
[3] R. Yahyazadeh, Z. Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N/Ga N Multiple Quantum Well Solar Cells, Journal of Optoelectronical Nanostructures, 5 (3) (2020) 81-102. Available: http://jopn.miau.ac.ir/article_4406.html
[4] A Horri, S. Z. Mirmoeini, Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser, Journal of Optoelectronical Nanostructures, 5 (2) (2020) 25-38.
Available: http://jopn.miau.ac.ir/article_4216.html
[5] Abbas Ghadimi; Mohamad Ahmadzadeh, Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL), Journal of Optoelectronical Nanostructures, 5 (1) (2020) 19-34. Available: http://jopn.miau.ac.ir/article_4031.html
[6] W. P. Schleich, Quantum Optics in Phase Space, 1st ed., Wiley-VCH, Berlin, (2001).
Available: https://onlinelibrary.wiley.com/doi/book/10.1002/3527602976
[7] E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE, 51(1) (1963) 89-109.
Available: https://ieeexplore.ieee.org/document/1443594
[8] H. Paul, Induzierte Emission bei starker Einstrahlung, Ann. Phys., 466(1) (1963) 411-412.
Available: https://onlinelibrary.wiley.com/doi/10.1002/andp.19634660710
[9] V. Bulovic, V. B. Khalfin, G. Gu, and P. E. Burrows , Weak microcavity effects in organic lightemitting devices, Phys. Rev. B, 58(1) (1998) 3730–3740.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.3730
[10] R. B. Fletcher et al., Spectral properties of resonant-cavity, polyfluorene light-emitting diodes, Appl. Phys. Lett., 77(2) (2000) 1262-1264. Available:
[11] W. P. Schleich and H. Walther Eds., Elements of Quantum Information, Wiley-VCH, Weinheim, Germany, (2007). Available: https://aip.scitation.org/doi/abs/10.1063/1.1287402
[12] K. M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom, Nature, 436(3) (2005) 87-90. Available: https://www.nature.com/articles/nature03804
[13] N. Gisin, et al. Quantum cryptography, Rev. Mod. Phys., 74(2) (2002) 145–195. Available: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.145
[14] E. Knill et al., A scheme for efficient quantum computation with linear optics, Nature, 409(1) (2001) 46-52.
Available: https://www.nature.com/articles/35051009
[15] W. Dür et al., Quantum repeaters based on entanglement purification, Phys. Rev. A, 59(4) (1999) 169-181.
Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.169
[16] S.E. Morin et al., Strong Atom-Cavity Coupling over Large Volumes and the Observation of subnatural inthracavity atomic linewidths, Phys. Rev. Lett., 73(1) (1994) 1489–1492.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.1489
[17] P. Michler, Single Semiconductor Quantum Dots, NanoScience and Technology, Springer, (2009) 267.
Available: https://link.springer.com/book/10.1007/978-3-540-87446-1
[18] D.J. Mowbray and M.S. Skolnick, New physics and devices based on self-assembled semiconductor quantum dots, J. Phys. D Appl. Phys. 38(1) (2005) 2059-2076. Available: https://ur.booksc.eu/book/22756298/63caed
[19] G.C. Shan, Z.Q. Yin, W. Huang, and C. H. Shek, Single photon sources with single semiconductor quantum dots, Front. Phys., 9 (170) (2014). Available: https://link.springer.com/article/10.1007%2Fs11467-013-0360-6
[20] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng, Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys., 16 (1) (2021) 11501. Available: https://link.springer.com/article/10.1007/s11467-020-1005-1
[21] G. Long, F. Deng, C. Wang, K. Wen, W. Wang, X. Li, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys., 2 (3) (2007) 251-272.
Available: https://link.springer.com/article/10.1007/s11467-007-0050-3
[22] C. Kurtsiefer et al., Stable Solid-State Source of Single Photons, Phys. Rev. Lett., 85(5) (2000) 290.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.290
[23] B. Lounis and W.E. Moerner, Single photons on demand from a single molecule at room temperature, Nature, 407 (2000) 491-493. Available: https://pubmed.ncbi.nlm.nih.gov/11028995/
[24] P. Michler, et al., Quantum correlation among photons from a single quantum dot at room temperature, Nature, 406 (2000) 968–970. Available: https://www.nature.com/articles/35023100
[25] J.M. Gerard et al., Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity, Phys. Rev. Lett., 81 (1998) 1110.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1110
[26] Purcell, E. M., Proceedings of the American Physical Society: Spontaneous Emission Probabilities at Ratio Frequencies, Physical Review, 69 (1946) 11–12. Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.69.674.2
[27] Kress, A. et.al, Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals, Physical Review B, 71 (24) (2005) 241304.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241304
[28] M. C. Münnix; A. Lochmann; D. Bimberg; V. A. Haisler, Modeling Highly Efficient RCLED-Type Quantum-Dot-Based Single Photon Emitters. IEEE Journal of Quantum Electronics, 45 (9) (2009) 1084–1088. Available: https://ieeexplore.ieee.org/document/5191277
[29] A. Kiraz, M. Atatüre, A. Imamoglu, Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing, Physical Review A, 69 (2004) 032305. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.032305
[30] Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar, Physical review letters, 116 (2016) 020401. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.020401
[31] L. Teuber, P. Grünwald, W. Vogel, Nonclassical light from an incoherently pumped quantum dot in a microcavity, Physical Review A, 92(5) (2015). Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.053857
[32] D. Press et.al., Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime, Phys. Rev. Lett., 98 (2007) 117402.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.117402
[33] J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, Strong coupling in a single quantum dot–semiconductor microcavity system, Nature, 432 (2004) 197-200.
Available: https://www.nature.com/articles/nature02969?proof=t
[34] P. Munnelly, T. Heindel, M. M. Karow, S. Hofling, M. Kamp, Ch. Schneider, S. Reitzenstein, A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser, IEEE Journal of Selected Topics in Quantum Electronics, 21 (6) (2015) 1900609. Available: https://ieeexplore.ieee.org/document/7073594