Study of the Purcell factor of a single photon source based on quantum dot nanostructure for quantum computing applications

Document Type : Articles

Author

Department of Physics, Faculty of Science, Malayer University, Malayer, Iran

Abstract

Single photon sources are the basis of quantum
computing. An optical system including a quantum dot
(QD) within the micro-pillar cavity can be a candidate for
high quality single photon source. Here, the vacuum Rabi
splitting (VRS) of this optical system for different
situations was studied. The coupling constant threshold
of this Single photon source to start VRS, was calculated
for each of these situations. Then, given that the Purcell
factor threshold for using single photon source pulses in
linear optics quantum computing is , Purcell
factor behavior of this single photon source including a
QD with FWHM of 5μeV, was studied. The results
showed that to use the single photon pulses of this system
in quantum computation ( ), the FWHM of micropillar
cavity must be less than 100μeV. Also, for cavities
with normal FWHM range, if coupling constant is greater
than 50μeV, then and therefore its single
photons can be used for quantum computing.

Keywords


[1] M.R. Mohebbifar, Study of the quantum efficiency of semiconductor quantum dot pulsed micro-laser, Journal of Optoelectronical Nanostructures, 6 (1) (2021) 59-70. Available: http://jopn.miau.ac.ir/article_4544.html
[2] D. Karimi Moghadam, Gh. Solookinejad, Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons, Journal of Optoelectronical Nanostructures, 5 (3) (2020) 59-70. Available: http://jopn.miau.ac.ir/article_4404.html
[3] R. Yahyazadeh, Z. Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N/Ga N Multiple Quantum Well Solar Cells, Journal of Optoelectronical Nanostructures, 5 (3) (2020) 81-102. Available: http://jopn.miau.ac.ir/article_4406.html
[4] A Horri, S. Z. Mirmoeini, Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser, Journal of Optoelectronical Nanostructures, 5 (2) (2020) 25-38.
Available: http://jopn.miau.ac.ir/article_4216.html
[5] Abbas Ghadimi; Mohamad Ahmadzadeh, Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL), Journal of Optoelectronical Nanostructures, 5 (1) (2020) 19-34. Available: http://jopn.miau.ac.ir/article_4031.html
[6] W. P. Schleich, Quantum Optics in Phase Space, 1st ed., Wiley-VCH, Berlin, (2001).
Available: https://onlinelibrary.wiley.com/doi/book/10.1002/3527602976
[7] E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE, 51(1) (1963) 89-109.
Available: https://ieeexplore.ieee.org/document/1443594
[8] H. Paul, Induzierte Emission bei starker Einstrahlung, Ann. Phys., 466(1) (1963) 411-412.
Available: https://onlinelibrary.wiley.com/doi/10.1002/andp.19634660710
[9] V. Bulovic, V. B. Khalfin, G. Gu, and P. E. Burrows , Weak microcavity effects in organic lightemitting devices, Phys. Rev. B, 58(1) (1998) 3730–3740.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.3730
[10] R. B. Fletcher et al., Spectral properties of resonant-cavity, polyfluorene light-emitting diodes, Appl. Phys. Lett., 77(2) (2000) 1262-1264. Available:
[11] W. P. Schleich and H. Walther Eds., Elements of Quantum Information, Wiley-VCH, Weinheim, Germany, (2007). Available: https://aip.scitation.org/doi/abs/10.1063/1.1287402
[12] K. M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom, Nature, 436(3) (2005) 87-90. Available: https://www.nature.com/articles/nature03804
[13] N. Gisin, et al. Quantum cryptography, Rev. Mod. Phys., 74(2) (2002) 145–195. Available: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.145
[14] E. Knill et al., A scheme for efficient quantum computation with linear optics, Nature, 409(1) (2001) 46-52.
Available: https://www.nature.com/articles/35051009
[15] W. Dür et al., Quantum repeaters based on entanglement purification, Phys. Rev. A, 59(4) (1999) 169-181.
Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.169
[16] S.E. Morin et al., Strong Atom-Cavity Coupling over Large Volumes and the Observation of subnatural inthracavity atomic linewidths, Phys. Rev. Lett., 73(1) (1994) 1489–1492.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.1489
[17] P. Michler, Single Semiconductor Quantum Dots, NanoScience and Technology, Springer, (2009) 267.
Available: https://link.springer.com/book/10.1007/978-3-540-87446-1
[18] D.J. Mowbray and M.S. Skolnick, New physics and devices based on self-assembled semiconductor quantum dots, J. Phys. D Appl. Phys. 38(1) (2005) 2059-2076. Available: https://ur.booksc.eu/book/22756298/63caed
[19] G.C. Shan, Z.Q. Yin, W. Huang, and C. H. Shek, Single photon sources with single semiconductor quantum dots, Front. Phys., 9 (170) (2014). Available: https://link.springer.com/article/10.1007%2Fs11467-013-0360-6
[20] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng, Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys., 16 (1) (2021) 11501. Available: https://link.springer.com/article/10.1007/s11467-020-1005-1
[21] G. Long, F. Deng, C. Wang, K. Wen, W. Wang, X. Li, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys., 2 (3) (2007) 251-272.
Available: https://link.springer.com/article/10.1007/s11467-007-0050-3
[22] C. Kurtsiefer et al., Stable Solid-State Source of Single Photons, Phys. Rev. Lett., 85(5) (2000) 290.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.290
[23] B. Lounis and W.E. Moerner, Single photons on demand from a single molecule at room temperature, Nature, 407 (2000) 491-493. Available: https://pubmed.ncbi.nlm.nih.gov/11028995/
[24] P. Michler, et al., Quantum correlation among photons from a single quantum dot at room temperature, Nature, 406 (2000) 968–970. Available: https://www.nature.com/articles/35023100
[25] J.M. Gerard et al., Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity, Phys. Rev. Lett., 81 (1998) 1110.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1110
[26] Purcell, E. M., Proceedings of the American Physical Society: Spontaneous Emission Probabilities at Ratio Frequencies, Physical Review, 69 (1946) 11–12. Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.69.674.2
[27] Kress, A. et.al, Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals, Physical Review B, 71 (24) (2005) 241304.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241304
[28] M. C. Münnix; A. Lochmann; D. Bimberg; V. A. Haisler, Modeling Highly Efficient RCLED-Type Quantum-Dot-Based Single Photon Emitters. IEEE Journal of Quantum Electronics, 45 (9) (2009) 1084–1088. Available: https://ieeexplore.ieee.org/document/5191277
[29] A. Kiraz, M. Atatüre, A. Imamoglu, Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing, Physical Review A, 69 (2004) 032305. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.032305
[30] Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar, Physical review letters, 116 (2016) 020401. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.020401
[31] L. Teuber, P. Grünwald, W. Vogel, Nonclassical light from an incoherently pumped quantum dot in a microcavity, Physical Review A, 92(5) (2015). Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.053857
[32] D. Press et.al., Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime, Phys. Rev. Lett., 98 (2007) 117402.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.117402
[33] J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, Strong coupling in a single quantum dot–semiconductor microcavity system, Nature, 432 (2004) 197-200.
Available: https://www.nature.com/articles/nature02969?proof=t
[34] P. Munnelly, T. Heindel, M. M. Karow, S. Hofling, M. Kamp, Ch. Schneider, S. Reitzenstein, A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser, IEEE Journal of Selected Topics in Quantum Electronics, 21 (6) (2015) 1900609. Available: https://ieeexplore.ieee.org/document/7073594