[1] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4) (2005) 35-44. Available: https://doi.org/10.1088/0268-1242/20/4/004.
[2] J.F. Wager, D.A. Kheszler, R.E. Persley, Transparent Electronics. Springer, (2008).
[3] D.K. Aswal, S.K. Gupta, Science and Technology of Chemi resister Gas Sensors. Nova Science Pub, (2007).
[4] J.F. Banifield, D.R. velben, D.J. Smith, The identification of naturally occurring TiO2 by structure determination using high-resolution electron microscopy,image simulation,and distance-least-squers refinement. American. Mineralogist. 76(3-4) (1991) 343-353. Available:
https://pubs.geoscienceworld.org/msa/ammin/article-abstract/76/3-4/343/42515/The-identification-of-naturally-occurring-TiO2-B.
V.A. Schwarz, S.D. Klein, R.H. Hornung, R. Knochenmuss, P. Wyss, D. Fink, U. Haler, H. Walt, Laser in Surgery and Medicine. Wiley, (2001) 252-256.
[6] C.M. Lampert, Optical Coatings for Energy Efficiency and Solar Applications, in Durable innovative solar optical materials-the international challenge. Houston, (1982).
[7] Q. Cai, J. Hu, Effect of UVA/LED/TiO2 Photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. Water. Re. 140 (2018) 251-260. Available: https://doi.org/10.1016/j.watres.2018.04.053.
[8] H.R. Pouretedal, Visible photocatalytic activity of co-dapted TiO2/Zr, N nanoparticles in wastewater treatment of nitrotoluene sample. J. Alloys. Compd. 735 (2018) 2507-2511. Available: https://doi.org/10.1016/j.jallcom.2017.12.018.
[9] G. Chiarello, M. Dozzi, E. Selli, TiO2 - based materials for Photocatalytic hydrogen production. J. Energy. Chem. 26(2) (2017) 250-258. Available: https://doi.org/10.1016/j.jechem.2017.02.005.
[10] T. Jedsukontorn, T. Uneo, N. Saito, M. Hunsom, Narrowing bandgap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. Journal of Alloys and Compounds. 757 (2018) 188-199. Available: https://doi.org/10.1016/j.jallcom.2018.05.046.
[11] B. Richards, Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells, 79(3) (2003) 369-390. Available: https://doi.org/10.1016/S0927-0248(02)00473-7.
[12] A. Majeed, J. He, L. Jiao, X. Zhong, Z. Sheng, Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering. Nanoscale Res. Lett. 10(56) (2015) 91. Available: https://doi.org/10.1186/s11671-015-0732-7.
[13] L. Bait, L. Azzouz, N. Saoula, N. Madaoui, Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Appl. Surf. Sci. 395 (2017) 72-77. Available: https://doi.org/10.1016/j.apsusc.2016.07.101.
[14] R.E. Krebs, The History and use of our Earths Chemical Elements. GreenWood, Press, 2006.
[15] S. Ikhmayies, Advanced in silicon solar cells. Springer, (2008).
[16] S.M. Manakov, K.K. Dikhanbaev, M.A. Ikhankyzy, T.I. Taurbayev, Z.A. Mansurov, A.B. Lesbayev, Y. Sagidolda, Light Trapping Enhancement in Gallium Arsenide Solar Cells, Journal of Nanoelectronics and Optoelectronics. Journal of Nanoelectronics and Optoelectronics. 9(4) (2014) 511-514. Available: https://doi.org/10.1166/jno.2014.1626. [17] U. MANDADAPU, S.V. VEDANAYAKAM, K. TYAGARAJAN, M. RAJA REDDY, B.J. BABU, OPTIMISATION OF HIGH EFFICIENCY TIN HALIDE PEROVSKITE SOLAR CELLS USING SCAPS-1D. International Journal of Simulation & Process Modelling. 13(3) (2018) 221-227. Available: https:// doi/abs/10.1504/IJSPM.2018.093097.
[18] T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations. Solar Energy Material & Solar Cells. 87(1-4) (2005) 757-769. Available: https://doi.org/10.1016/j.solmat.2004.07.049.
[19] P.M. Sommeling, B.C. Oregan, R.P. Haswell, H.J.P. Smith, N.J. Baker, J.J.T Smits, J.M. Kroon, J.A.M. Van Roosmalen, Influence of a TiCL4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B, 110(39) (2006) 19191-19197. Available: https:// doi/abs/10.1021/jp061346k.
[20] J. Hu, P. Liu, M. Chen, S. Li, Y. Yang, Synthesis and first principle calculation of TiO2 rutile nanowire electrodes for dye-sensitized solar cells. Int. J. ElectroChem. Sci. 12 (2017) 9725-9735. Available: http://electrochemsci.org/doi:10.20964/2017.10.47.
[21] A. Zabon, S.T. Aruna, S. Tirosh, B.A. Gregg, Y. Mastai, The effect of the preparations condition of TiO2 colloids on their surface structures. J. Phys. Chem. B. 104(17) (2000) 4130-4133. Available: https://doi.org/10.1021/jp993198m.
[22] D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R.D. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase,brookite and rutile. Nanotechnology. 19 (2008) 145605. Available: https://doi.org/10.1088/0957-4484/19/14/145605.
[23] Z. Lin, C. Jiang, C. Zhu, J. Zhang, Development of inverted organic solar cells with TiO2 interface layer by using low-term-perature atomic layer deposition. ACS Appl. Mater. Interfaces. 5(3) (2013) 713-718. Available: https://doi.org/10.1021/am302252p.
[24] M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films. 280(1-2) (1996) 20-25. Available: https://doi.org/10.1016/0040-6090(95)08239-5.
[25] J. Yu, X. Zhao, J. Du, W. Chen, Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing, J. Sci. Technol. 17 (2007) 163-171. Available: https://doi.org/10.1023/A:1008703719929.
[26] J. Hu, R.G. Gordan, Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition. J. Appl. Phys. 71(2) (1992) 880. Available: https://doi.org/10.1063/1.351309.
[27] J.-H. Kim, S. Lee, H.-S. Im, the effect of target density and its morphology on TiO2 thin films grown on Si (100) by PLD. Appl. Surf. Sci. 151(1-2) (1999) 6-16. Available: https://doi.org/10.1016/S0169-4332(99)00269-X.
[28] C.H. Heo, S.B. Lee, J.H. Boo, Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin solid films. 475(1-2) (2005) 183-188. Available: https://doi.org/10.1016/j.tsf.2004.08.033.
[29] T. Minami, H. Sato, K. Ohashi, T. Tomofuji, S. Takata, Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering. J. Cryst. Growth. 117(1-4) (1992) 370-374. Available: https://doi.org/10.1016/0022-0248(92)90778-H.
[30] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. ACS Publications. 107(7) (2007) 2891-2959. Available: https://doi.org/10.1021/cr0500535.
[31] A. Hadipour, D. Cheyns, P. Heremans, B.P. Rand, Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells. Adv. Energy. Mater. 1 (2011) 930-935. Available: https://doi.org/10.1021/cr0500535.
[32] J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. More-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano. Lett. 14(2) (2013) 724-730. Available:
https://doi.org/10.1021/nl403997a.
[33] U.J. Krull, M. Thompson, Encyclopedia of Physical science and Technology: Analytical Chemistry. 3rd, Academic Press, (2001).
[34] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Materials Research. Bulletin. 3(1) (1968) 37-46. Available: Available: https://doi.org/10.1016/0025-5408(68)90023-8.
[35] Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorode superstructures. J. Phys. Chem. C. 111(6) (2007) 2709-27014. Available: https:// doi/abs/10.1021/jp066519k.
[36] K. Bange, C.R. Ottermann, O. Anderson, U. Jeschkowski, R.M. Laube Feile, Investigations of TiO2 films deposited by different techniques. Thin Solid Films. 197(1-2) (1991) 279-285. Available: https://doi.org/10.1016/0040-6090(91)90238-S.
[37] L. Williams, M.D.W. Hess, Structural properties of titanium dioxide films deposited in an rf glow discharge. Journal of Vacuum Science & Technology. 1(4) (1983) 1810. Available: https://doi.org/10.1116/1.572220.
[38] M.H. Suhail, G. Mohan Rao, S. Mohan, Dc reactive magnetron sputtering of titanium‐structural and optical characterization of TiO2 films. J. Appl. Phys. 71(3) (1992) 1421. Available: https://doi.org/10.1063/1.351264.
[39] S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive DC Plasmatron Sputtering. Thin Solid Films. 83(2) (1981) 239-245. Available: https://doi.org/10.1016/0040-6090(81)90673-8.
[40] W.T. Pawlewicz, R. Busch, Reactively sputtered oxide optical coatings for inertial confinement fusion laser components. Thin Solid Films. 63(2) (1979) 251-256. Available: https://doi.org/10.1016/0040-6090(79)90023-3.
[41] D.R. Mardare, The influence of heat treatment on the optical properties of titanium oxide thin films. Materials Letters. 56(3) (2002) 210-214. Available: https://doi.org/10.1016/S0167-577X(02)00441-X.
[42] Y.-Q. Hou, D.M. Zhuang, M.Z. Zhang, M.S. Wu, Influence of annealing temperature on the properties of titanium oxide thin film. Applied Surface Science. 218(1-4) (2003) 98-106. Available:
https://doi.org/10.1016/S0169-4332(03)00569-5.
[43] P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films. Applied. Surface. Science. 24(3) (2014) 218-225. Available: https://doi.org/10.1016/j.pnsc.2014.05.010.
[44] [44] M.C. Liao, H. Niu, G. Chen, Effect of sputtering pressure and post-annealing on hydrophilicity of TiO2 thin films deposited by reactive magnetron sputtering. Thin Solid Film. 518(24) (2010) 7258-7262. Available: https://doi.org/10.1016/j.tsf.2010.04.106.
[45] A. Wiatrowski, M. Mazur, A. Obstarczyk, D. Wojcieszak, D. Kaczmarek, J. Morgiel, D. Gibson, Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow. Coatings. 8(11) (2018) 412. Available: https://doi.org/10.3390/coatings8110412.
[46] O.-G. Simionescu, C. Romanit, O. Tutunaru, V. Ion, O. Buiu, A. Avram, RF Magnetron Sputtering deposition of TiO2 Thin Films in a Small Continouos Oxygen Flow Rate. coatings. 9(7) (2019) 442. Available: https://doi.org/10.3390/coatings9070442.
[47] M.Soussi, A. Ait hssi, M.Boujnah, K. Abouabbasi, A. Asbayou, A. Elfanaoui, R. Markazi, A. Ihlal, K. Bouabid, Electronic and Optical Properties of TiO2 Thin Films: Combined Experimental and Theoretical Study. Journal of Electronic Materials. 50 (2021) 4497-4510. Available: https://doi.org/10.1007/s11664-021-08976-8.
[48] N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B.U. Haq, S. Goumri-Said, Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III–V arsenides. Semicond. Sci. Technol. 28 (2013) 105015. Available: https://doi.org/10.1088/0268-1242/28/10/105015.
[49] S. Di Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B. 51(19) (1995) 13023. Available: https://doi.org/10.1103/PhysRevB.51.13023.
[50] C. Lee, X. Gonze, Dielectric constants and Born effective charges of TiO2 rutile. Phys. Rev. B. 49 (1994) 14730. Available:
https://doi.org/10.1103/PhysRevB.49.14730.
[51] M.M. Islam, T. Bredow, A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys. Rev. B. 76(4) (2007) 1. Available: https://doi.org/10.1103/PhysRevB.76.045217.
[52] F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke–Johnson exchange potential. J. Phys. Condens. Matter, 19 (2007)196208. Available: https://doi.org/10.1088/0953-8984/19/19/196208.
[53] A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, X. Portier, Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating. Int. J. Hydrogen Energy. 36 (2011) 4130-4133. Available: https://doi.org/10.1016/j.ijhydene.2010.07.057.
[54] N. J. Shivaramu, K. R. Nagabhushana, B.N. Lakshminarasappa, F. Singh, Ion beam induced luminescence studies of sol gel derived Y2O3:Dy3+ nanophosphors. Journal of Luminescence. 169(B) (2016) 627-634. Available: https://doi.org/10.1016/j.jlumin.2015.07.054.
[55] M. K. Woka, L. Ottaviano, J. Szuber, AFM study of the surface morphology of L-CVD SnO2 thin films. Thin Solid Films. 515(23) (2007) 8328-8331. Available: https://doi.org/10.1016/j.tsf.2007.03.035.
[56] A. E. Lita, J. E. Sanchez Jr., Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution. J. Appl. Phys. 85(2) (1999) 876. Available: https://doi.org/10.1063/1.369206.
[57] D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures. Appl. Surf. Sci. 253(23) (2007) 9085-9090. Available: https://doi.org/10.1016/j.apsusc.2007.05.032.
[58] H.C. Ward, T.R. Thomas, Rough Surfaces, Ed., Longman, London, 1982.
[59] G. B. Williamson, R. C. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye Scherrer spectrum. Phil. Mag. 1(1) (1956) 34-46. Available: https://doi.org/10.1080/14786435608238074.
[60] B.R. kumar, T.S. Rao, AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminium oxide thin films, Digest Journal of Nanomaterials and Biostructures. 7(4) (2012) 1881-1889.
[61] K. Wysocka, A. Ulatowska, J. Bauer, I. Holowacz, B. Savu, G. Stanciu, Optica Applicata. 38 (2008) 130. Available:
https://doi.org/10.17482/uumfd.309657.
[62] N.P. Poddar, S.K. Mukherjee, Anatase phase evolution and its stabilization in ion beam sputtered TiO2 thin films, Thin Solid Films. 666 (2018) 113-120. Available: https://doi.org/10.1016/j.tsf.2018.09.038.
[63] P. Singh, D. Kaur, Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering. Physica. B: Condensed Matter. 405(5) (2010) 1258-1266. Available: https://doi.org/10.1016/j.physb.2009.11.061.
[64] B.N.Chapman, Sputtering InGlow Discharge Processes—sputtering and Plasma Etching. Wiley, NewYork, NY, USA, (1980) 177–296.