[1] J.D.Joannopoulos, P.R. Villeneuve, and S. Fan. Erratum: Photonic crystals: putting a new twist on light. Nature. [online]. 387(6635) ( 1997, March) 830-830. Available: https://www.nature.com/articles/386143a0
[2] Q.Yan, L. Wang, and X.S. Zhao. Artificial Defect Engineering in Three-Dimensional Colloidal Photonic Crystals. Advanced Functional Materials. [online]. 17(18) (2007, Nov.) 3695-3706. Available: https://doi.org/10.1002/adfm.200600538
[3] C.-C. Wang, and L.-W. Chen. Channel drop filters with folded directional couplers in two-dimensional photonic crystals. Physica B: Condensed Matter. [online]. 405(4) (2010, Feb.) 1210-1215. Available: https://doi.org/10.1016/j.physb.2009.11.044
[4] B. Saghirzadeh Darki, and N. Granpayeh. Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Optics Communications. [online]. 283(20) (2010, Oct.) 4099-4103. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401810006073
[5] M. Lee, and P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection. OPTICS EXPRESS. [online]. 15(8) (2007, Apr.) 4530-4535. Available: https:// DOI: 10.1364/OE.15.004530
[6] M.Djavid, and A.M. Ghaffari, and M.S.Abrishmian. Photonic_Crystal_Narrow_Band_Filters_Using Biperiodic Structures. Journal of Applied sciences. [online]. 8(10) (2008) 1891-1897. Available: https://scialert.net/fulltext/?doi=jas.2008.1891.1897&org=11
[7] S. Robinson, and r. Nakkeran. Investigation on Photonic Crystal based Filter using Square, Circular and Hexagonal rods. International Conference on Computer, Communication and Electrical Technology – ICCCET. [online]. (2011, March). Available: https://ieeexplore.ieee.org/abstract/document/5762485
[8] Z. Qiang and W. Zhou. Optical add-drop filters based on photonic crystal ring resonators. OPTICS EXPRESS. [online]. 15(4) (2007, Feb.) 1823-1831. Available: https://opg.optica.org/oe/abstract.cfm?uri=OE-15-4-1823
[9] J.J.V Olmos, M. Tokushima, and K.I. Kitayama. Photonic Add–Drop Filter Based on Integrated Photonic Crystal Structures. IEEE Journal of Selected Topics in Quantum Electronics. [online]. 16(1) (2010, Jan.) 332-337. Available: https://doi: 10.1109/JSTQE.2009.2028901
[10] P. Andalib, and N. Granpayeh, Optical Add/drop Filter Based on Dual Curved Photonic Crystal Resonator. IEEE/LEOS International Conference on Optical MEMs and Nanophotonics. [online]. (2008, Aug.). Available: https://doi: 10.1109/GROUP4.2008.4638161
[11] F. Monifi, and A.G.M. Djavid, and M.S. Abrishamian. A_New_Bandstop_Filter_Based_on_Photonic_Crystals. Progress In Electromagnetics Research Symposium. [online]. ( 2008, July) 674-677. Available: https://www.researchgate.net/publication/266228117
[12] V. Fallahi , M.Seyfouri. Novel Structure of Optical Add/Drop Filters and Multi-Channel Filter Based On Photonic Crystal for Using In Optical Telecommunication Devices. Journal of Optoelectronical Nanostructures. [online]. 4(2) (2019, Nov.) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[13] Z. Rashki, S.J.S.M.C., Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter.. Journal of Optoelectronical Nanostructures (JOPN). [online]. 3(3) (2018, Summer) 59-78, Available: http://jopn.miau.ac.ir/article_3046.html
[14] V. Fallahi, M.Seyfouri. Design of an Improved Optical Filter Based on Dual-Curved PCRR for WDM Systems. Journal of Optoelectronical Nanostructures (JOPN). [online]. 2(3) (2017, Autumn) 45-56. Available: http://jopn.miau.ac.ir/article_2573.html
[15] Q. Gong, and X. Hu, Photonic photonic crystal sensors, in Photonic Crystals: Principles and Applications, Taylor & Francis Group, Pan Stanford publishing, 2014, 336-340, Available: https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.1201/b15654&type=googlepdf
[16] R.V. Nair, and R. Vijaya. Photonic crystal sensors: An overview. Progress in Quantum Electronics. [online]. 34(3) (2010, May) 89-134. Available:https://doi: 10.1016/j.pquantelec.2010.01.001
[17] M. Danaie, and B. Kiani. Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics and Nanostructures - Fundamentals and Applications. [online]. 31 (2018, Sep.) 89-98.
Available:https://doi: 10.1016/j.photonics.2018.06.004
[18] A. Shi, R. Ge, and J. Liu. Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity. Superlattices and Microstructures. [online]. 133 (2019, Sep.) 106198.
Available: https://doi.org/10.1016/j.spmi.2019.106198
[19] S. Mandal, and D. Erickson. Nanoscale optofluidic sensor arrays. Optics Express. [online]. 16(3) ( 2008, Jan.) 1623-1631.
Available:https://doi: 10.1364/OE.16.001623
[20] V. Fallahi , M.Seifouri. Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications. Journal of Optoelectronical Nanostructures. [online]. 3(4) (2018, Autumn) 59-70. Available: http://jopn.miau.ac.ir/article_3262.html
[21] S. M. Hosein, M.S. Jalali, G. Akbarizadeh, Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators. [online]. 4(3) (2019, Autumn) 59-72, Available: http://journals.miau.ac.ir/article_3620.html
[22] J.D. Joannopoulos, et al, molding the flow of light, in Photonic crystals, 2nd. Edition, Princeton University Press; 2008, Available: https://www.amazon.com/Photonic-Crystals-Molding-Light-Second/dp/0691124566
[23] Y. Tsuji, Y. Morita, and K. Hirayama. Photonic Crystal Waveguide Based on 2-D Photonic Crystal With Absolute Photonic Band Gap. IEEE Photonics Technology Letters. [online]. 18(22) (2006, Nov.) 2410-2412.
Available: https://doi: 10.1109/lpt.2006.885295
[24] F.-l. Hsiao, and C. Lee. Computational Study of Photonic Crystals Nano-Ring Resonator for Biochemical Sensing. IEEE Sensors Journal. [online]. 10(7) (2010, July) 1185-1191.
Available:https:// doi: 10.1109/JSEN.2010.2040172
[25] E. Chow, et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters. [online]. 29(10) (2004, May) 1093-1095. Available: https://opg.optica.org/ol/abstract.cfm?uri=OL-29-10-1093
[26] C. Caër, et al. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Optics Letters. [online]. 39(20) ( 2014, Oct.) 5792-5794. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-39-20-5792
[27] A. Benmerkhi, M. Bouchemat, and T. Bouchemat. Improved sensitivity of the photonic crystal slab biosensors by using elliptical air holes. Optik. [online]. 127(14) ( 2016, july) 5682-5687.
Available:https://doi.org/10.1016/j.ijleo.2016.03.057
[28] S. Zlatanovic, et al. Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sensors and Actuators B: Chemical. [online]. 141 (2009, Aug.) 13-19.
Available:https://doi: 10.1016/j.snb.2009.06.007
[29] M. Lee , and P.M. Fauchet. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express. [online]. 15(8) (2007, Apr.) 4530-4535. Available: https://doi: 10.1364/OE.15.004530
[30] H.S. Dutta, and S. Pal. Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Optical and Quantum Electronics. [online]. 45(9) (2013, May) 907-917.
Available:https://link.springer.com/article/10.1007/s11082-013-9697-x
[31] H.S. Dutta, A.K. Goyal, and S. Pal. Sensitivity enhancement in photonic crystal waveguide platform for refractive index sensing applications. Journal of Nanophotonics. [online]. 8(1) (2014, Jun.) 083088. Available: https://doi.org/10.1117/1.JNP.8.083088
[32] Y.-n. Zhang,., Y. Zhao, and Q. Wang. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sensors and Actuators B: Chemical. [online]. 184 (2013, Jul.) 179-188. Available: https://doi.org/10.1016/j.snb.2013.04.082
[33] A. Harhouz, and A. Hocini. Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. Journal of Electromagnetic Waves and Applications. [online]. 29(5) (2015, March) 659-667. Available: https://doi: 10.1080/09205071.2015.1012597
[34] X .Wang, et al. Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Optics Communications - OPT COMMUN. [online]. 281 (2008, March) 1725-1731. Available: https://doi: 10.1016/j.optcom.2007.11.040
[35] X. Wang, et al. Photonic crystal refractive index sensing based on sandwich structure. Optik. [online]. 123(23) (2012, Dec.) 2113-2115 https://doi.org/10.1016/j.ijleo.2011.10.008
[36] A. Hocini, and A. Harhouz. Modeling and analysis of the temperature sensitivity in two-dimensional photonic crystal microcavity. Journal of Nanophotonics. [online]. 10(1) (2016, Feb.) 016007.
Available:https://doi: 10.1117/1.jnp.10.016007
[37] D. Yang, H. Tian, and Y. Ji. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Optics Express. [online]. 19(21) (2011, Sep.) 20023-20034. Available: https://doi.org/10.1364/OE.19.020023
[38] L. Huang, et al. Design low crosstalk ring-slot array structure for label-free multiplexed sensing. Sensors (Basel). [online]. 14(9) (2014, Aug.) 15658-68. Available:https://doi: 10.3390/s140915658 [39] S. Upadhyay, VL Kalyani. High sensitive refractive index sensor based on 2D-photonic crystal. IJERT. [online]. 4 (2015, Feb.) 1006-1010. Available: https://www.ijert.org/high-sensitive-refractive-index-sensor-based-on-2d-photonic-crystal
[40] S. Jindal, et al. Nanocavity-Coupled Photonic Crystal Waveguide as Highly Sensitive Platform for Cancer Detection. IEEE Sensors Journal. [online]. 16(10) (2016, May) 3705-3710. Available: https://doi: 10.1109/jsen.2016.2536105
[41] M. Ammari, F. Hobar, and M. Bouchemat. Photonic crystal microcavity as a highly sensitive platform for RI detection. Chinese Journal of Physics. [online]. 56(4) (2018, Aug.) 1415-1419. Available:https://doi: 10.1016/j.cjph.2018.05.010
[42] F. Rahman-Zadeh, M. Danaie, and H. Kaatuzian. Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electronics Review. [online]. 27(4)( 2019, Dec.) 369-377. Available: https://doi: 10.1016/j.opelre.2019.11.007
[43] A.Tavousi, M.R. Rakhshani, and M.A. Mansouri-Birjandi. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Optics Communications. [online]. 429 (2018, Dec.) 166-174. Available:
https://doi.org/10.1016/j.optcom.2018.08.019
[44] D.M. Pozar, Microwave engineering, 4th. ed., John wiley & sons, 2012, 6-15.
Available:https://www.wiley.com/en-ie/Microwave+Engineering,+4th+Edition-p-9780470631553
[45] M. Soljačić, et al., Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, [online]. 19(9) (2002, Sep.) 2052-2059, Available: https://doi: 10.1364/JOSAB.19.002052
[46] K.M. Leung, and Y.F. Liu. Photon band structures: The plane-wave method. Physical Review B. [online]. 41(14) (1990, May) 10188-10190. Available:https://doi: 10.1103/PhysRevB.41.10188
[47] K.M. Ho, C.T. Chan, and C.M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters. [online]. 65(25) (1990, Dec.) 3152-3155. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.65.3152
[48] T.S. Mostafa, N.A. Mohammed, and E.-S.M. El-Rabaie. Ultracompact ultrafast-switching-speed all-optical 4 × 2 encoder based on photonic crystal. J. Comput. Electron. [online]. 18(1) ( 2019, Nov.) 279–292. Available: https://link.springer.com/article/10.1007/s10825-018-1278-6
[49] F.-L. Hsiao, and C. Lee. Novel Biosensor Based on Photonic Crystal Nano-Ring Resonator. Procedia Chemistry. [online]. 1(1) (2009, Sep.) 417-420. Available:https://doi.org/10.1016/j.proche.2009.07.104
[50] S. Olyaee, and S. Najafgholinezhad. Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator. Applied Optics. [online]. 52(29) (2013, Oct.) 7206 Available: https://doi.org/10.1364/AO.52.007206
[51] S. Olyaee, S. Najafgholinezhad, and H. Alipour Banaei. Four-channel label-free photonic crystal biosensor using nanocavity resonators. Photonic Sensors. [online]. 3(3) (2013, Feb.) 231-236. Available:https://doi: 10.1007/s13320-013-0110-y
[52] S. Olyaee, and A. Mohebzadeh-Bahabady. Designing a novel photonic crystal nano-ring resonator for biosensor application. Optical and Quantum Electronics. [online]. 47(7) (2014, Nov.) 1881-1888.
Available:https://doi: 10.1007/s11082-014-0053-6
[53] S. Najafgholinezhad, and S. Olyaee. A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator. Optik. [online]. 125(21) (2014, Nov.) 6562-6565.
Available:https://doi: 10.1016/j.ijleo.2014.08.043
[54] N.A. Mohammed, et al. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results in Physics. [online]. 14 (2019, Sep.) 102478. Available: https://doi.org/10.1016/j.rinp.2019.102478