Document Type : Articles
Authors
1 Assistant professor, Department of Electrical and Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
2 PhD Candidate, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
Abstract
Keywords
Available: https://doi.org/10.1016/j.enconman.2009.08.018
[2] S. Mo, Z. Chen, and P. Hu. Performance of a passively cooled Fresnel lens concentrating photovoltaic module. Presented at 3th Int. Conf. Photovolt. Energy Convers. Osaka, Japan, (2011).
Available: https://doi.org/0.1109/APPEEC.2011.5747676
[3] K. Rai, N. D. Kaushika, B. Singh, and N. Agarwal. Simulation model of ANN based maximum power point tracking controller for solar PV system. Sol. Energy Mater Sol. Cells. 95(2) (2011) 773–778.
Available: https://doi.org/10.1016/j.solmat.2010.10.022
[4] M. J. O’Neill, and M. F. Piszczor. Development of a dome Fresnel lens/GaAs photovoltaic concentrator for space applications. 19th IEEE Photovol. Spec. Conf. (1987, May) 479-484.
Available: https://ui.adsabs.harvard.edu/abs/1987pvsp.conf..479O/abstract
[5] M. J. O’Neill, M. F. Piszczor, M. I. Eskenazi, A. J. McDanal, P. J. George, M. M. Botke, H.W. Brandhorst, D. L. Edwards, and D. T. Hoppe. Ultra-light stretched Fresnel lens solar concentrator for space power applications. Int. Sym. on Opt. Sci. Tech. 5179 (2003) 116-126.
Available: https://doi.org/10.1117/12.505801
[6] M. Rajaee, and S. M. B. Ghorashi. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel’s efficiency enhancement. J. Theor. Appl. Phys. 9(4) (2015) 251-259.
Available: https://link.springer.com/article/10.1007/s40094-015-0180-x
[7] K. Shanks, S. Senthilarasu, and T. K Mallick. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 60 (2016) 394-407.
Available: https://doi.org/10.1016/j.rser.2016.01.089
[8] M. Z. Shvarts, and A. A. Soluyanov. Improved concentration capabilities of flat-plate Fresnel lenses. Int. Adv. Sci. Technol 74 (2010) 188-195.
Available: https://doi.org/10.4028/www.scientific.net/AST.74.188
[9] Keshavarz. A, and Soltanzadeh. M. Designing the optimal lenses by using Zemax software. JOPN. 3 (2) (2018) 87-96.
Available: http://jopn.miau.ac.ir/article_2865.html
[10] L. Jing, H. Liu, Y. Wang, W. Xu, H. Zhang, and Z. Lu, Design and optimization of Fresnel lens for high concentration photovoltaic system. Int. J. Photoenergy. (2014).
Available: https://doi.org/10.1155/2014/539891
[11] L. Guiqiang, and Y. Jin. Optical simulation and experimental verification of a Fresnel solar concentrator with a new hybrid second optical element. Int. J. Photoenergy. (2016).
Available: https://doi.org/10.1155/2016/4970256
[12] D. Parenden, and H. Haryanto. Simulation of photovoltaic concentration with Fresnel lens using Simulink MATLAB. Eur. J. Electr. Eng. 21(2) (2019) 223-227.
Available: https://doi.org/10.18280/EJEE.210214
[13] M. Hiramatsu, Y. Miyazaki, T. Egarni, A. Akisawa, and Y. Mizuta. Development of non-imaging Fresnel lens and sun tracking device. 3th Int. Conf. Photovol. Energ. Convers. Osaka, Japan, (2003) 2383–2385.
Available: https://link.springer.com/article/10.1007/s40094-015-0180-x
[14] D. Wagner, and L. He. An innovative solar system with high efficiency and low cost. 35th IEEE Photovolt. Spec. Conf. (2010) 003039-003042.
Available: https://doi.org/10.1109/PVSC.2010.5614212
[15] A. Al-Mohamad. Efficiency improvements of photovoltaic panels using a sun tracking system. Appl. Energy, 79(3) (2004) 345–354.
Available: https://doi.org/10.1016/j.apenergy.2003.12.004
[16] R. Tejwany, and C. S. Solanki. 360° sun tracking with automated cleaning system for solar PV modules. 35th IEEE Photovol. Spec. Conf. (2010) 002895-002898.
Available: https://doi.org/10.1109/PVSC.2010.5614475
[17] S. Seme, G. Stumberger, and J. Vorsic. Maximum efficiency trajectories of a two axes sun tracking systems determined considering tracking system consumption. IEEE Trans. Power Electron. 26(4) (2011) 1280-1290.
Available: https://doi.org/10.1109/TPEL.2011.2105506
[18] A. Awasthi, A. K. Shukla, M. M. SR. C. Dondariya, C, K. N. Shukla, D. Porwal, and G. Richhariya. Review on sun tracking technology in solar PV system. Energy Rep. 6 (2020) 392-405.
Available: https://doi.org/10.1016/j.egyr.2020.02.004
[19] R. Abu-Malouh, S. Abdallah, and I. M. Muslih. Design, construction and operation of spherical solar cooker with automatic sun tracking system. Energ. Convers. Manage. 52(1) (2011) 615-620.
Available: https://doi.org/10.1016/j.enconman.2010.07.037
[20] A. Poullikkas, G. Kourtis, and I. Hadjipaschalis. Parametric comparative study for the installation of solar dish technologies in Cyprus. 7th Med Power. Ayia Napa, Cyprus, (2010) 1-8.
Available: https://doi.org/10.1049/cp.2010.0856
[21] Comsol Multiphysics Software Package,
Available: https://www.comsol.com
[22] D. Jalalian, A. Ghadimi, and A. Kiani. Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells. JOPN. 5 (2) (2020)65-78.
Available: http://jopn.miau.ac.ir/article_4219.html
[23] R. Yahyazadeh, and Z. Hashempour. Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 AlGaN / GaN Multiple Quantum Well Solar Cells. JOPN. 5 (3) (2020) 81-102.
Available: http://jopn.miau.ac.ir/article_4406.html
[24] A. Mirkamali, and K. K. Muminov. Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D. JOPN. 2 (1) (2017) 31-40.
Available: http://jopn.miau.ac.ir/article_2198.html
[25] S. M. S. Hashemi Nasab, Imanieh, and A. Kamali. The Effects of Doping and Thickness of the Layers on CIGS Solar Cell Efficiency. JOPN. 1 (1) (2016) 9-24.
Available: http://jopn.miau.ac.ir/article_1812.html
[26] N. A. Zainal, M. Ajis, and A. R. Yusoff. Modelling of photovoltaic module using MATLAB Simulink. IOP Conf. Series: Materials Science and Engineering, 114(1) (2016) 012137.
Available:https://iopscience.iop.org/article/10.1088/1757-899X/114/1/012137/meta
[27] M. H. M. Sidek, W. Z. W. Hasan, M.A. Kadir, S. Shafie, M. A. M. Radzi, S. A. Ahmad, and M. H. Marhaban. GPS based portable dual-axis solar tracking system using astronomical equation, In 2014 IEEE Int. Conf. Power Energy (2014) 245-249.
Available: https://doi.org/10.1109/PECON.2014.7062450
[28] C. Sungur. Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renew. Energy. 34(4) (2009) 1119–1125. Available: https://doi.org/10.1016/j.renene.2008.06.020