Analysis and Implementation of a New Method to Increase the Efficiency of Photovoltaic Cells by Applying a Dual Axis Sun Tracking System and Fresnel Lens Array

Document Type : Articles

Authors

1 Assistant professor, Department of Electrical and Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran

2 PhD Candidate, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran

Abstract

Nowadays conversion efficiency of photovoltaic (PV)
equipment is considered as an important issue. In this
article, the effects of a semi-Fresnel lens as a convergent
structure will be simulated in COMSOL Multiphysics
software and the results would make improvements in the
characteristic responses of PV cells which are verified
with our experimental results. Besides, because the groove
angles of the semi-Fresnel lens are calculated based on the
orthogonal sun rays, a novel dual-axis sun tracking system
has been designed and constructed for panel orientation
adjustment. So, the sun rays always radiate at the same
efficient angles on PV cells. This issue leads to a reduction
in light concentration area, the total area of the cells and
their costs. Results show a significant improvement in
output power of the PV cells array in comparison to the
previous study by more than 2.5 times. Also, the effective
time of cell performance from sunrise to sunset, extends
longer during a day, regardless of location and time zone.

Keywords


  1. Zhai, Y.J. Dai, J.Y. Wu, R.Z. Wang, and L. Y. Zhang. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energ. Convers. Manage. 51(1) (2010) 48–55.

Available: https://doi.org/10.1016/j.enconman.2009.08.018

[2]   S. Mo, Z. Chen, and P. Hu. Performance of a passively cooled Fresnel lens concentrating photovoltaic module. Presented at 3th Int. Conf. Photovolt. Energy Convers. Osaka, Japan, (2011).

Available: https://doi.org/0.1109/APPEEC.2011.5747676

[3]   K. Rai, N. D. Kaushika, B. Singh, and N. Agarwal. Simulation model of ANN based maximum power point tracking controller for solar PV system. Sol. Energy Mater Sol. Cells. 95(2) (2011) 773–778.

Available: https://doi.org/10.1016/j.solmat.2010.10.022

[4]   M. J. O’Neill, and M. F. Piszczor. Development of a dome Fresnel lens/GaAs photovoltaic concentrator for space applications. 19th IEEE Photovol. Spec. Conf. (1987, May) 479-484.

Available: https://ui.adsabs.harvard.edu/abs/1987pvsp.conf..479O/abstract

[5]   M. J. O’Neill, M. F. Piszczor, M. I. Eskenazi, A. J. McDanal, P. J. George, M. M. Botke, H.W. Brandhorst, D. L. Edwards, and D. T. Hoppe. Ultra-light stretched Fresnel lens solar concentrator for space power applications. Int. Sym. on Opt. Sci. Tech. 5179 (2003) 116-126.

Available: https://doi.org/10.1117/12.505801

[6]   M. Rajaee, and S. M. B. Ghorashi. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel’s efficiency enhancement. J. Theor. Appl. Phys. 9(4) (2015) 251-259.

Available: https://link.springer.com/article/10.1007/s40094-015-0180-x

[7]   K. Shanks, S. Senthilarasu, and T. K Mallick. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 60 (2016) 394-407.

Available: https://doi.org/10.1016/j.rser.2016.01.089

[8]   M. Z. Shvarts, and A. A. Soluyanov. Improved concentration capabilities of flat-plate Fresnel lenses. Int. Adv. Sci. Technol 74 (2010) 188-195.

Available: https://doi.org/10.4028/www.scientific.net/AST.74.188

[9]   Keshavarz. A, and Soltanzadeh. M. Designing the optimal lenses by using Zemax software. JOPN. 3 (2) (2018) 87-96.

Available: http://jopn.miau.ac.ir/article_2865.html

[10] L. Jing, H. Liu, Y. Wang, W. Xu, H. Zhang, and Z. Lu, Design and optimization of Fresnel lens for high concentration photovoltaic system. Int. J. Photoenergy. (2014).

Available:  https://doi.org/10.1155/2014/539891

[11] L. Guiqiang, and Y. Jin. Optical simulation and experimental verification of a Fresnel solar concentrator with a new hybrid second optical element. Int. J. Photoenergy. (2016).

Available: https://doi.org/10.1155/2016/4970256

[12] D. Parenden, and H. Haryanto. Simulation of photovoltaic concentration with Fresnel lens using Simulink MATLAB. Eur. J. Electr. Eng. 21(2) (2019) 223-227.

Available: https://doi.org/10.18280/EJEE.210214

[13] M. Hiramatsu, Y. Miyazaki, T. Egarni, A. Akisawa, and Y. Mizuta. Development of non-imaging Fresnel lens and sun tracking device. 3th Int. Conf. Photovol. Energ. Convers. Osaka, Japan, (2003) 2383–2385.

Available: https://link.springer.com/article/10.1007/s40094-015-0180-x

[14] D. Wagner, and L. He. An innovative solar system with high efficiency and low cost.  35th IEEE Photovolt. Spec. Conf. (2010) 003039-003042.

Available: https://doi.org/10.1109/PVSC.2010.5614212

[15] A. Al-Mohamad. Efficiency improvements of photovoltaic panels using a sun tracking system. Appl. Energy, 79(3) (2004) 345–354.

Available:  https://doi.org/10.1016/j.apenergy.2003.12.004

[16] R. Tejwany, and C. S. Solanki. 360° sun tracking with automated cleaning system for solar PV modules. 35th IEEE Photovol. Spec. Conf. (2010) 002895-002898.

Available:  https://doi.org/10.1109/PVSC.2010.5614475

[17] S. Seme, G. Stumberger, and J. Vorsic. Maximum efficiency trajectories of a two axes sun tracking systems determined considering tracking system consumption. IEEE Trans. Power Electron. 26(4) (2011) 1280-1290.

Available: https://doi.org/10.1109/TPEL.2011.2105506

[18] A. Awasthi, A. K. Shukla, M. M. SR. C. Dondariya, C, K. N. Shukla, D. Porwal, and G. Richhariya. Review on sun tracking technology in solar PV system. Energy Rep. 6 (2020) 392-405.

Available:  https://doi.org/10.1016/j.egyr.2020.02.004

[19] R. Abu-Malouh, S. Abdallah, and I. M. Muslih. Design, construction and operation of spherical solar cooker with automatic sun tracking system. Energ. Convers. Manage. 52(1) (2011) 615-620.

Available:  https://doi.org/10.1016/j.enconman.2010.07.037

[20] A. Poullikkas, G. Kourtis, and I. Hadjipaschalis. Parametric comparative study for the installation of solar dish technologies in Cyprus. 7th Med Power. Ayia Napa, Cyprus, (2010) 1-8.

Available: https://doi.org/10.1049/cp.2010.0856

[21] Comsol Multiphysics Software Package,

Available: https://www.comsol.com

[22] D. Jalalian, A. Ghadimi, and A. Kiani. Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells. JOPN. 5 (2) (2020)65-78.

Available: http://jopn.miau.ac.ir/article_4219.html

[23] R. Yahyazadeh, and Z. Hashempour. Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 AlGaN / GaN Multiple Quantum Well Solar Cells. JOPN. 5 (3) (2020) 81-102.

Available: http://jopn.miau.ac.ir/article_4406.html

[24] A. Mirkamali, and K. K. Muminov. Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D. JOPN. 2 (1) (2017) 31-40.

Available: http://jopn.miau.ac.ir/article_2198.html

[25] S. M. S. Hashemi Nasab, Imanieh, and A. Kamali. The Effects of Doping and Thickness of the Layers on CIGS Solar Cell Efficiency. JOPN. 1 (1) (2016) 9-24.

Available: http://jopn.miau.ac.ir/article_1812.html

[26] N. A. Zainal, M. Ajis, and A. R. Yusoff. Modelling of photovoltaic module using MATLAB Simulink. IOP Conf. Series: Materials Science and Engineering, 114(1) (2016) 012137.

Available:https://iopscience.iop.org/article/10.1088/1757-899X/114/1/012137/meta

[27] M. H. M. Sidek, W. Z. W. Hasan, M.A. Kadir, S. Shafie, M. A. M. Radzi, S. A. Ahmad, and M. H. Marhaban. GPS based portable dual-axis solar tracking system using astronomical equation, In 2014 IEEE Int. Conf. Power Energy (2014) 245-249.

Available: https://doi.org/10.1109/PECON.2014.7062450

[28]  C. Sungur. Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renew. Energy. 34(4) (2009) 1119–1125.  Available: https://doi.org/10.1016/j.renene.2008.06.020