[5] Van Dyke, J.S., et al., Protecting quantum information in quantum dot spin chains by driving exchange interactions periodically. Physical Review B, 103(24) (2021) 245303.
https://doi.org/10.1103/PhysRevB.103.245303
]6] Yahyazadeh, R. and Z. Hashempour, Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures, 6(2) (2021) 1-22.
https://dx.doi.org/10.30495/jopn.2021.27941.1221
[7] Jafari, S.N., A. Ghadimi, and S. Rouhi, Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures, 5(4) (2020).
http://jopn.miau.ac.ir/article_4505.html
[8] Yahyazadeh, R. and Z. Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N/GaN Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures, 5(3) (2020) 81-102.
http://jopn.miau.ac.ir/article_4406.html
[10] Sefidgar, Y., H. Rasooli Saghai, and H. Ghatei Khiabani Azar, Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures, 4(2) (2019) 83-102.
http://jopn.miau.ac.ir/article_3480.html
[11] Izadneshan, H., V. Gremenok, and G. Solookinejad, Fabrication of Cu (In, Ga) Se2 solar cells with In2S3 buffer layer by two stage process. Journal of Optoelectronical Nanostructures, 1(2) (2016) 47-56.
http://jopn.miau.ac.ir/article_2048_0.html
[15] Sabaeian, M. and A. Khaledi-Nasab, Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer. Applied Optics, 51(18) (2012) 4176-4185.
https://doi.org/10.1364/AO.51.004176
[16] Shahzadeh, M. and M. Sabaeian, The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots. AIP Advances, 4(6) (2014) 067113.
https://doi.org/10.1063/1.4896510
[17] Sabaeian, M. and M. Shahzadeh, Investigation of in-plane-and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: Size and shape matter. Journal of Applied Physics, 116(4) (2014) 043102.
https://doi.org/10.1063/1.4891252
[18] Sabaeian, M. and M. Riyahi, Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption. Physica E: Low-dimensional Systems and Nanostructures, 89 (2017) 105-114.
https://doi.org/10.1016/j.physe.2017.02.008
[20] Gajjela, R.S., et al., Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots. Light: Science & Applications, 10(1) (2021) 1-13.
https://doi.org/10.1038/s41377-021-00564-z
[21] Choubani, M., H. Maaref, and F. Saidi, Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature. Journal of Physics and Chemistry of Solids, 138 (2020) 109226.
https://doi.org/10.1016/j.jpcs.2019.109226
[22] Mo, Q., et al., Room temperature synthesis of stable silica-coated CsPbBr 3 quantum dots for amplified spontaneous emission. Photonics Research, 8(10) (2020) 1605-1612.
https://doi.org/10.1364/PRJ.399845
[23] Zekavat, M.A., M. Sabaeian, and G. Solookinejad, Graphene plasmonic coupling with intersubband radiation of truncated pyramidal-shaped InAs/GaAs quantum dots. JOSA B, 38(6) (2021) 1824-1833.
https://doi.org/10.1364/JOSAB.416163
[24] Choubani, M., et al., Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects. Journal of luminescence, 144 (2013) 158-162.
https://doi.org/10.1016/j.jlumin.2013.07.002
[25] Sabaeian, M. and M. Shahzadeh, GaAs pyramidal quantum dot coupled to wetting layer in an AlGaAs matrix: A strain-free system. Physica E: Low-Dimensional Systems and Nanostructures, 68 2015). 215-223.
https://doi.org/10.1016/j.physe.2015.01.004