[1] C. Kurtsiefer, S. Mayer, P. Zarda and H. Weinfurter, Stable solid-state source of single photons, Phys. Rev. Lett. 85 (290) (2000).
[2] F. Diedrich and H. Walther, Nonclassical radiation of single stored ion, Phys. Rev. Lett. 58 (203) (1987).
[3] T. Basche, W. E. Moerner, M. Orrit and H. Talon, Photon antibunching in the fluorescence of a single dye molecule trapped in a solid, Phys. Rev. Lett. 69 (1516) (1992).
[4] P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature, Nature, 406 (968) (2000).
Study of the Quantum Efficiency of Semiconductor Quantum Dot Pulsed Micro-Laser * 67
[5] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Phys. Rev. Lett. 86 (1502) (2001).
[6] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Electrically driven single-photon source, Science 295 (102) (2002).
[7] F. hakimian, M. R. Shayesteh, M. R. Moslemi, Proposal for Modeling of FWM Efficiency of QD-SOA Based on the Pump/Probe Measurement Technique, journal of optoelectronical nanostructures 5 (4) (2020) 49-66.
[8] F. hakimian, M. R. Shayesteh, M. R. Moslemi, A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers, journal of optoelectronical nanostructures 4 (3) (2019) 1-16.
[9] R. Pourtajabadi, M. Nayeri, A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata, journal of optoelectronical nanostructures 4 (1) (2019) 39-50.
[10] H. Bahramiyan, S. Bagheri, Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect, journal of optoelectronical nanostructures 3 (3) (2018) 79-100.
[11] M. R. Mohebbifar, M. Zohrabi, Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation, journal of optoelectronical nanostructures 4 (4) (2019) 65-80.
[12] U. Badilli, F. Mollarasouli, N. K. Bakirhan, Y. Ozkan, S. A. Ozkan, Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery, Trends Analyt Chem, 131( 2020) 116013
[13] H. Saljoughi, F. Khakbaz, M. Mahani, Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging, Photodiagnosis Photodyn Ther, 30 (2020) 101687.
[14] A. Das, S. R. Mondal, G. Palai, Realization of graphene based quantum dot solar cell through the principle of photonics, Optik, 221 (2020) 165283.
[15] S. Manivannan, K. Ponnuchamy, Quantum dots as a promising agent to combat COVID‐19, Appl Organomet Chem. , 34 (10) (2020).
[16] D.J. Mowbray, M.S. Skolnick, New physics and devices based on self-assembled semiconductor quantum dots, J. Phys. D Appl. Phys. 38 (2005) 2059
68 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
[17] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, Ch. Schneider, M. Kamp, S. Höfling, Chao-Yang Lu, Jian-Wei Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar, Phys. Rev. Lett., 116 (2016) 020401.
[18] S. Y. Kilin and T. B. Karlovich, Single-atom laser: coherent and nonclassical effects in the regime of a strong atom-field correlation, J. Exp. & Theo. Phys. 95, (2002) 805
[19] P. Munnelly, T. Heindel, M. M. Karow, S. Hofling, M. Kamp, Ch. Schneider, S. Reitzenstein, A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Micro-laser, IEEE J. Sel. Top. Quantum Electron, 21 (6) (2015)
[20] S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, Ch. Schneider, S. Höfling, X. Porte, S. Reitzenstein, Quantum-optical spectroscopy of a two-level system using an electrically driven micro-pillar laser as a resonant excitation source, Light: Science & Applications 7(41) (2018)
[21] S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, Photon Statistics of Semiconductor Microcavity Lasers, Phys. Rev. Lett., 98 (2007) 043906-4
[22] C. H. Bennet, G. Brassard and A. Eckert, Quantum cryptography, Sci. Am. 267(4) (1992) 50.
[23] E. Knill, R. Laflamme and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, 409 (46) (2001).
[24] L. A. Coldren, What is a diode laser oscillator?, IEEE J. Sel. Top. Quantum Electron.19 (2013) 1503503
[25] S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers, Phys. Rev. Lett. 96 (2006) 127404
[26] M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Höfling, J. Mørk, L. Worschech, M. Kamp, and A. Forchel, Bloch-Wave Engineering of Quantum Dot Micropillars for Cavity Quantum Electrodynamics Experiments, Phys Rev Lett 108 (2012) 057402-4
[27] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel, Superradiance of quantum dots, Nat. Phys. 3 (2007) 106-110
Study of the Quantum Efficiency of Semiconductor Quantum Dot Pulsed Micro-Laser * 69
[28] G. Cui, M. G. Raymer, Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime, Opt. Express 13 (2005) 9660