[1] G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, M. Zahid, Investigation of structural and optoelectronic properties of BaThO3, Opt. Mater. 33 (Nov. 2011) 553-557.
[2] R. M. Ormerod, Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges, Chem. Soc. Rev. 32 (Nov. 2003) 1-8.
[3] S. P. S. Badwal, Stability of solid oxide fuel cell components, Sol. Sta. Ion. 143,(1) (Jun. 2001) 39-46.
[4] T. Saitoh, T. Mizokava, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Stability of solid oxide fuel cell components, Phys. Rev. B 55 (4257) (Feb. 1997) 1-12.
[5] C.L. Ma, J. Cang, First principles investigation on the band gap of the ground state of LaCoO3, Sol. Sta. Commun, 150,(41)(Nov. 2010) 1983-1986.
[6] M. Cheraghizade, Optoelectronic Properties of PbS Films: Effect of Carrier Gas, J. of Opt. Nano. 4 (spring 2019) 1-12.
[7] H. Salehi, F. Anis Hoseini, First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase, J. of Opt. Nano. 4 (spring 2019) 69-82.
[8] H. Salehi , P. Amiri, R. Zare Hasanabad, Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compound, J. of Opt. Nano. 3 (spring 2018) 53-64.
120* Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[9] S. J. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals, J. of Opt. Nano. 2 (Autumn 2017) 1-18.
[10] S. Zahra Hosseini Minabi, A. Keshavarz, A. Gharaati, The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles, J. of Opt. Nano. 1 (Autumn 2016) 67-76.
[11] H. Hsu, K. Umemoto, M. Cococcioni, R. Wentzcovitch, First-principles study for low-spin LaCoO3 with a structurally consistent Hubbard U, Phys. Rev. B 79 (125124) (March 2009) 1-9.
[12] Y. L. Lee, J. Kleis, J. Rossmeisl, and D. Morgan, Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes, Phys. Rev. B 80 (224101) (Dec. 2009) 1-20.
[13] D. Gryaznov, R. A. Evarestov, and J. Maier, Hybrid density-functional calculations of phonons in LaCoO3, Phys. Rev. B 82, (224301) (Dec. 2010) 1-5.
[14] M. Abbate, R. Potze, G. A. Sawatzky, A. Fujimori, Band-structure and cluster-model calculations of LaCoO3 in the low-spin phase, Phys. Rev. B 49 (7210) (March 1994) 1-7.
[15] M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, G. A. Sawatzky, Intermediate-spin state and properties of LaCoO3, Phys. Rev. B 54, (5309) (Oct. 1996) 1-16.
[16] H. Hsu, K. Umemoto, M. Cococcioni, R. Wentzcovitch, First-principles study for low-spin LaCoO3 with a structurally consistent Hubbard U , Phys. Rev. B 79 (125124) (March 2009) 1-9.
[17] Y. L. Lee, J. Kleis, J. Rossmeisl, D. Morgan, Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes, Phys. Rev. B 80 (224101) (Dec. 2009) 1-20.
[18] S. K. Pandey, A. Kumar, S. Patil, V. R. R. Medicherla, R. S. Singh, K. Maiti, Investigation of the spin state of Co in LaCoO3 at room temperature: Ab initio calculations and high-resolution photoemission spectroscopy of single crystals, Phys. Rev. B 77, (045123) (Jan. 2008) 1-14.
[19] J. Buckeridge, F. H. Taylor, and C. R. A. Catlow. , Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3, Phys. Rev. B 93, (155123) (Apr. 2016) 1-11.
Ab-initio LSDA study of the electronic states of nano scale layered LaCoO3/Mn … *121
[20] Xiao Wang, Ye Han, Xiaojie Song, Weihui Liu, Hongzhi Cui., Phonon spectrum and thermodynamic properties of LaCoO3 based on first-principles theory, Comp. Mat. Sci. 136, (Aug. 2017) 191–197.
[21] V. I. Anisimov, J. Zaanen, O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44, (March 1991) 943-954.
[22] H. Liu, X. Dong, Y. Li1, H. Zhang, K. Chen, Q. Hou, Y. Huang, Q. Li, XANES study of the role of Sr doping in LaCoO3, 15th International Conference on X-ray Absorption Fine Structure (XAFS15), Beijing, China Journal of Physics: Conference Series 430 (Jul. 2013) 22–28.
[23] P.G. Radaelli, S.-W. Cheong, Structural phenomena associated with the spin-state transition in LaCoO3, Phys. Rev. B 66, (094408) (Sep. 2002) 1-9.
[24] Y. Kobayashi, T. Mitsunaga, G. Fujikawa, T. Arai, M. Suetake, K. Asai, J. Harada, Structural Phase Transition from Rhombohedral to Cubic in LaCoO3, J. Phys. Soc. Jpn. 69 (Oct. 2000) 3468-3481.
[25] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Rafson, M.C. Payne, Z. Kristallogr. First principles methods using CASTEP, Zeitschrift für Kristallographie, 220 (Jul. 2005) 567-570.
[26] G. Thornton, B. C. Tofleld, A. W. J. Hewat, A Neutron Diffraction Study of LaCo03 in the Temperature Range 4.2 to 1248 K, Sol. Sta. Chem. 61 (Jul. 1986) 301-307.
[27] M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C.T. Chen, R. Potze, G. A. Sawatzky, H. Eisaki, S.Uchida, Electronic structure and spin-state transition of LaCoO3, Phys. Rev. B 47, 16124 (Jun. 1993)1-12.
[28] A. Chainani, M. Mathew, D. D. Sarma, Electron-spectroscopy study of the semiconductor-metal transition in La1-xSrxCoO3, Phys. Rev. B 46, 9976 (1992) 1-9.
[29] T. Arima, Y. Tokura, J. B. Torrance, Variation of optical gaps in perovskite-type 3d transition-metal oxides, Phys. Rev. B 48, 17006 (Dec. 1993) 1-8 .
[30] X. Zhang, G. Fu, H. Wan, Density Functional Theory Study on Spin States of LaCoO3 at Room Temperature, Chi. J. of Chem. Phys., 27, (3) (2014) 274-278.