[1] Z. Song, H. Zhou. Towards sustainable and versatile energy storage
devices: an overview of organic electrode materials. Energy Environ. Sci. 6
(2013) 2280–2301.
Available:
https://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee40709h#!divAbst
ract.
[2] B. Dunn, H. Kamath, J. M. Tarascon. Electrical Energy Storage for the
Grid: A Battery of Choices. Science (80) 334 (2011) 928–935. Available:
https://science.sciencemag.org/content/334/6058/928.full
Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus * 35
[3] P.A. Owusu, S. Asumadu-Sarkodie. A review of renewable energy sources,
sustainability issues and climate change mitigation. Cogent Eng. 3 (2016)
1167990-1167999.
Available:
https://www.tandfonline.com/doi/full/10.1080/23311916.2016.1167990.
[4] M.S. Lamraski, S. Babaee, S.M. Pourmortazavi. Study of Optical
Properties, Thermal Kinetic Decomposition and Stability of Coated PETNLitholrubine
nano-Composite via Solvent / None-Solvent Method Using
Taguchi Experimental Design. J. Optoelectron. Nanostructures. 4 (2019)
11–15. Available: http://jopn.miau.ac.ir/article3759.html.
[5] A. Vlad, N. Singh, J. Rolland, S. Melinte, P. Ajayan, J. F. Gohy. Hybrid
supercapacitor-battery materials for fast electrochemical charge storage.
Sci. Rep. 4 (2014) 4315-4325.
Available: https://www.nature.com/articles/srep04315
[6] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková. Supercapacitors:
Properties and applications. J. Energy Storage. 17 (2018) 224–227.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S2352152X18301634
.
[7] M. Xu, Y. Ma, R. Liu, Y. Liu, Y. Bai, X. Wang, Y. Huang, G. Yuan.
Melamine sponge modified by graphene/polypyrrole as highly compressible
supercapacitor electrodes. Synth. Met. 267 (2020) 116461-116465.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0379677920303246.
[8] T. Selvaraj, V. Perumal, S.F. Khor, L.S. Anthony, S.C.B. Gopinath, N. Muti
Mohamed. The recent development of polysaccharides biomaterials and
their performance for supercapacitor applications. Mater. Res. Bull. 126
(2020) 110839-110845.
Available:
https://www.sciencedirect.com/science/article/pii/S0025540819332258.
[9] N. Zhao, L. Deng, D. Luo, P. Zhang. One-step fabrication of biomassderived
hierarchically porous carbon/MnO nanosheets composites for
symmetric hybrid supercapacitor. Appl. Surf. Sci. 526 (2020) 146696-
146698.
36 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0169433220314537.
[10] M. Soltani, J. Ronsmans, S. Kakihara, J. Jaguemont, P. Van den Bossche, J.
van Mierlo, N. Omar. Hybrid battery/lithium-ion capacitor energy storage
system for a pure electric bus for an urban transportation application.
Appl. Sci. 8 (2018) 1176-1195.
Available: https://www.mdpi.com/2076-3417/8/7/1176.
[11] K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. wu, Y. Lu, Y. Huang, Y. Chen.
Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance.
Nano Res. 6 (2013) 581-592.
Available: https://link.springer.com/article/10.1007/s12274-013-0334-6.
[12] M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks. Fabrication of
Graphene Oxide Supercapacitor Devices. ACS Appl. Energy Mater. 1
(2018) 707–714.
Available: https://pubs.acs.org/doi/abs/10.1021/acsaem.7b00164.
[13] A. Moftakharzadeh, B.A. Aghda, M. Hosseini. Noise Equivalent Power
Optimization of Graphene- Superconductor Optical Sensors in the Current
Bias Mode. J. Optoelectron. Nanostrucre. 3 (2018) 1–12. Available:
http://jopn.miau.ac.ir/article 3040.html.
[14] G. Ramezani, B. Honarvar, M. Emadi. Thermodynamic study of ( pb 2 + )
removal by adsorption onto modified magnetic Graphene Oxide with
Chitosan and Cysteine. J. Optoelectron. Nanostructures. 4 (2019) 12–17.
Available: http://jopn.miau.ac.ir/article_3621.html.
[15] T. Kesavan, R. Aswathy, I. Raj, P. Kumar, P. Ragupathy. Nitrogen-Doped
Graphene as Electrode Material with Enhanced Energy Density for Next-
Generation Supercapacitor Application. ECS J. Solid State Sci. Technol. 4
(2015) 1–5.
Available: https://iopscience.iop.org/article/10.1149/2.0281512jss/meta.
[16] F. Tuzluca, Y. Yesilbag, M. Ertuğrul. Synthesis of ultra-long boron
nanowires as supercapacitor electrode material. Appl. Surf. Sci. 493
(2019) 787-794.
Available: https://www.sciencedirect.com/journal/applied-surfacescience/
vol/493/suppl/C.
Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus * 37
[17] W.S.V. Lee, M. Leng, M. Li, X.L. Huang, J.M. Xue. Sulphurfunctionalized
graphene towards high performance supercapacitor. Nano
Energy. 12 (2015) 250–257. Available:
https://www.sciencedirect.com/science/article/abs/pii/S2211285514002997.
[18] K. Prasannan, N. Rajalakshmi, K.S. Dhathathreyan. Phosphorus-Doped
Exfoliated Graphene for Supercapacitor Electrodes. J. Nanosci.
Nanotechnol. 13 (2013) 1746–1751. Available:
https://www.ingentaconnect.com/content/asp/jnn/2013/00000013/00000003
/art00019;jsessionid=18li36v6fsq8r.x-ic-live-03.
[19] S. Some, J. Kim, K. Lee, A. Kulkarni, Y. Yoon, S. Lee, T. Kim, H. Lee.
Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect
Transistors. Adv. Mater. 24 (2012) 5481–5486.
Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201202255.
[20] J. Song, Z. Yu, M.L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula,
D. Choi, X. Li, A. Manivannan, D. Wang. Chemically Bonded
Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-
Ion Batteries. Nano Lett. 14 (2014) 6329–6335.
https://doi.org/10.1021/nl502759z.
Available: https://pubs.acs.org/doi/10.1021/nl502759z.
[21] Z. Yu, J. Song, M.L. Gordin, R. Yi, D. Tang, D. Wang. Phosphorus-
Graphene Nanosheet Hybrids as Lithium-Ion Anode with Exceptional High-
Temperature Cycling Stability. Adv. Sci. 2 (2015)1400020-1400029.
Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201400020.
[22] W.S. Hummers, R.E. Offeman. Preparation of Graphitic Oxide. J. Am.
Chem. Soc. 80 (1958) 1339-1340.
Available: https://pubs.acs.org/doi/10.1021/ja01539a017.
[23] A. Emadi, B. Honarvar, M. Emadi, M. Nafar. Supercapacitor Electrode.
Formation Based on Thoil-Functionalized Graphene Oxide. Russian
Journal of Applied Chemistry 93 (2020) 1160-1171. Available:
https://link.springer.com/article/10.1134/S107042722008008X.
[24] B. Zheng, T.-W. Chen, F.-N. Xiao, W.-J. Bao, X.-H. Xia. KOH-activated
nitrogen-doped graphene by means of thermal annealing for
supercapacitor. J. Solid State Electrochem. 17 (2013) 1809–1814.
38 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
Available: https://link.springer.com/article/10.1007/s10008-013-2101-8.
[25] M.B. Bakhshandeh, E. Kowsari. Functionalization of partially reduced
graphene oxide by metal complex as electrode material in supercapacitor.
Res. Chem. Intermed. 46 (2020) 2595–2612.
Available: https://link.springer.com/article/10.1007%2Fs11164-020-04109-
8.
[26] T.-S. He, X.-D. Yu, T.-J. Bai, X.-Y. Li, Y.-R. Fu, K.-D. Cai. Porous
carbon nanofibers derived from PAA-PVP electrospun fibers for
supercapacitor. Ionics (Kiel). 26 (2020) 4103-4111. .
Available: https://link.springer.com/article/10.1007%2Fs11581-020-03529-
1.
[27] Z. Chen, Y. Jiang, B. Xin, S. Jiang, Y. Liu, L. Lin. Electrochemical
analysis of conducting reduced graphene oxide/polyaniline/polyvinyl
alcohol nanofibers as supercapacitor electrodes. J. Mater. Sci. Mater.
Electron. 31 (2020) 5958–5965.
Available: https://link.springer.com/article/10.1007%2Fs10854-020-03204-
1.
[28] W. Song, Z. Zhang, P. Wan, M. Wang, X. Chen, C. Mao. Low temperature
and highly efficient oxygen/sulfur dual-modification of nanoporous carbon
under hydrothermal conditions for supercapacitor application. J. Solid
State Electrochem. 24 (2020) 761–770.
Available: https://link.springer.com/article/10.1007/s10008-019-04492-
2?shared-article-renderer.
[29] M.H. Pham, A. Khazaeli, G. Godbille-Cardona, F. Truica-Marasescu, B.
Peppley, D.P.J. Barz. Printing of graphene supercapacitors with enhanced
capacitances induced by a leavening agent. J. Energy Storage. 28 (2020)
101210-101220.