Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus

Document Type : Articles

Authors

1 Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

2 Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

Abstract

Supercapacitors have attracted much attention in the field of electrochemical
energy storage. However, material preparation and stability limit their applications in
many fields. Herein, a reduced graphene oxide@phosphorus (rGO@P) electrode was
prepared using a simple inexpensive method. The new graphene structure (rGO@P) was
characterized by X-ray di􀀀raction, Fourier transform infrared spectroscopy, scanning
electron microscopy and Energy-dispersive X-ray spectroscopy.
Electrode showed excellent performances (307 F g−1), which seem to be the highest
among many other rGO@P-based electrodes reported so far. It also has an excellent
cyclic stability up to 95% after 600 consecutive charge/discharge tests. So, the ease of
the synthesis method and excellent performance of the prepared electrode materials mat
have significant potential for energy storage applications.

Keywords


[1] Z. Song, H. Zhou. Towards sustainable and versatile energy storage
devices: an overview of organic electrode materials. Energy Environ. Sci. 6
(2013) 2280–2301.
Available:
https://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee40709h#!divAbst
ract.
[2] B. Dunn, H. Kamath, J. M. Tarascon. Electrical Energy Storage for the
Grid: A Battery of Choices. Science (80) 334 (2011) 928–935. Available:
https://science.sciencemag.org/content/334/6058/928.full
Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus * 35
[3] P.A. Owusu, S. Asumadu-Sarkodie. A review of renewable energy sources,
sustainability issues and climate change mitigation. Cogent Eng. 3 (2016)
1167990-1167999.
Available:
https://www.tandfonline.com/doi/full/10.1080/23311916.2016.1167990.
[4] M.S. Lamraski, S. Babaee, S.M. Pourmortazavi. Study of Optical
Properties, Thermal Kinetic Decomposition and Stability of Coated PETNLitholrubine
nano-Composite via Solvent / None-Solvent Method Using
Taguchi Experimental Design. J. Optoelectron. Nanostructures. 4 (2019)
11–15. Available: http://jopn.miau.ac.ir/article3759.html.
[5] A. Vlad, N. Singh, J. Rolland, S. Melinte, P. Ajayan, J. F. Gohy. Hybrid
supercapacitor-battery materials for fast electrochemical charge storage.
Sci. Rep. 4 (2014) 4315-4325.
Available: https://www.nature.com/articles/srep04315
[6] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková. Supercapacitors:
Properties and applications. J. Energy Storage. 17 (2018) 224–227.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S2352152X18301634
.
[7] M. Xu, Y. Ma, R. Liu, Y. Liu, Y. Bai, X. Wang, Y. Huang, G. Yuan.
Melamine sponge modified by graphene/polypyrrole as highly compressible
supercapacitor electrodes. Synth. Met. 267 (2020) 116461-116465.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0379677920303246.
[8] T. Selvaraj, V. Perumal, S.F. Khor, L.S. Anthony, S.C.B. Gopinath, N. Muti
Mohamed. The recent development of polysaccharides biomaterials and
their performance for supercapacitor applications. Mater. Res. Bull. 126
(2020) 110839-110845.
Available:
https://www.sciencedirect.com/science/article/pii/S0025540819332258.
[9] N. Zhao, L. Deng, D. Luo, P. Zhang. One-step fabrication of biomassderived
hierarchically porous carbon/MnO nanosheets composites for
symmetric hybrid supercapacitor. Appl. Surf. Sci. 526 (2020) 146696-
146698.
36 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0169433220314537.
[10] M. Soltani, J. Ronsmans, S. Kakihara, J. Jaguemont, P. Van den Bossche, J.
van Mierlo, N. Omar. Hybrid battery/lithium-ion capacitor energy storage
system for a pure electric bus for an urban transportation application.
Appl. Sci. 8 (2018) 1176-1195.
Available: https://www.mdpi.com/2076-3417/8/7/1176.
[11] K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. wu, Y. Lu, Y. Huang, Y. Chen.
Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance.
Nano Res. 6 (2013) 581-592.
Available: https://link.springer.com/article/10.1007/s12274-013-0334-6.
[12] M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks. Fabrication of
Graphene Oxide Supercapacitor Devices. ACS Appl. Energy Mater. 1
(2018) 707–714.
Available: https://pubs.acs.org/doi/abs/10.1021/acsaem.7b00164.
[13] A. Moftakharzadeh, B.A. Aghda, M. Hosseini. Noise Equivalent Power
Optimization of Graphene- Superconductor Optical Sensors in the Current
Bias Mode. J. Optoelectron. Nanostrucre. 3 (2018) 1–12. Available:
http://jopn.miau.ac.ir/article 3040.html.
[14] G. Ramezani, B. Honarvar, M. Emadi. Thermodynamic study of ( pb 2 + )
removal by adsorption onto modified magnetic Graphene Oxide with
Chitosan and Cysteine. J. Optoelectron. Nanostructures. 4 (2019) 12–17.
Available: http://jopn.miau.ac.ir/article_3621.html.
[15] T. Kesavan, R. Aswathy, I. Raj, P. Kumar, P. Ragupathy. Nitrogen-Doped
Graphene as Electrode Material with Enhanced Energy Density for Next-
Generation Supercapacitor Application. ECS J. Solid State Sci. Technol. 4
(2015) 1–5.
Available: https://iopscience.iop.org/article/10.1149/2.0281512jss/meta.
[16] F. Tuzluca, Y. Yesilbag, M. Ertuğrul. Synthesis of ultra-long boron
nanowires as supercapacitor electrode material. Appl. Surf. Sci. 493
(2019) 787-794.
Available: https://www.sciencedirect.com/journal/applied-surfacescience/
vol/493/suppl/C.
Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus * 37
[17] W.S.V. Lee, M. Leng, M. Li, X.L. Huang, J.M. Xue. Sulphurfunctionalized
graphene towards high performance supercapacitor. Nano
Energy. 12 (2015) 250–257. Available:
https://www.sciencedirect.com/science/article/abs/pii/S2211285514002997.
[18] K. Prasannan, N. Rajalakshmi, K.S. Dhathathreyan. Phosphorus-Doped
Exfoliated Graphene for Supercapacitor Electrodes. J. Nanosci.
Nanotechnol. 13 (2013) 1746–1751. Available:
https://www.ingentaconnect.com/content/asp/jnn/2013/00000013/00000003
/art00019;jsessionid=18li36v6fsq8r.x-ic-live-03.
[19] S. Some, J. Kim, K. Lee, A. Kulkarni, Y. Yoon, S. Lee, T. Kim, H. Lee.
Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect
Transistors. Adv. Mater. 24 (2012) 5481–5486.
Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201202255.
[20] J. Song, Z. Yu, M.L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula,
D. Choi, X. Li, A. Manivannan, D. Wang. Chemically Bonded
Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-
Ion Batteries. Nano Lett. 14 (2014) 6329–6335.
https://doi.org/10.1021/nl502759z.
Available: https://pubs.acs.org/doi/10.1021/nl502759z.
[21] Z. Yu, J. Song, M.L. Gordin, R. Yi, D. Tang, D. Wang. Phosphorus-
Graphene Nanosheet Hybrids as Lithium-Ion Anode with Exceptional High-
Temperature Cycling Stability. Adv. Sci. 2 (2015)1400020-1400029.
Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201400020.
[22] W.S. Hummers, R.E. Offeman. Preparation of Graphitic Oxide. J. Am.
Chem. Soc. 80 (1958) 1339-1340.
Available: https://pubs.acs.org/doi/10.1021/ja01539a017.
[23] A. Emadi, B. Honarvar, M. Emadi, M. Nafar. Supercapacitor Electrode.
Formation Based on Thoil-Functionalized Graphene Oxide. Russian
Journal of Applied Chemistry 93 (2020) 1160-1171. Available:
https://link.springer.com/article/10.1134/S107042722008008X.
[24] B. Zheng, T.-W. Chen, F.-N. Xiao, W.-J. Bao, X.-H. Xia. KOH-activated
nitrogen-doped graphene by means of thermal annealing for
supercapacitor. J. Solid State Electrochem. 17 (2013) 1809–1814.
38 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
Available: https://link.springer.com/article/10.1007/s10008-013-2101-8.
[25] M.B. Bakhshandeh, E. Kowsari. Functionalization of partially reduced
graphene oxide by metal complex as electrode material in supercapacitor.
Res. Chem. Intermed. 46 (2020) 2595–2612.
Available: https://link.springer.com/article/10.1007%2Fs11164-020-04109-
8.
[26] T.-S. He, X.-D. Yu, T.-J. Bai, X.-Y. Li, Y.-R. Fu, K.-D. Cai. Porous
carbon nanofibers derived from PAA-PVP electrospun fibers for
supercapacitor. Ionics (Kiel). 26 (2020) 4103-4111. .
Available: https://link.springer.com/article/10.1007%2Fs11581-020-03529-
1.
[27] Z. Chen, Y. Jiang, B. Xin, S. Jiang, Y. Liu, L. Lin. Electrochemical
analysis of conducting reduced graphene oxide/polyaniline/polyvinyl
alcohol nanofibers as supercapacitor electrodes. J. Mater. Sci. Mater.
Electron. 31 (2020) 5958–5965.
Available: https://link.springer.com/article/10.1007%2Fs10854-020-03204-
1.
[28] W. Song, Z. Zhang, P. Wan, M. Wang, X. Chen, C. Mao. Low temperature
and highly efficient oxygen/sulfur dual-modification of nanoporous carbon
under hydrothermal conditions for supercapacitor application. J. Solid
State Electrochem. 24 (2020) 761–770.
Available: https://link.springer.com/article/10.1007/s10008-019-04492-
2?shared-article-renderer.
[29] M.H. Pham, A. Khazaeli, G. Godbille-Cardona, F. Truica-Marasescu, B.
Peppley, D.P.J. Barz. Printing of graphene supercapacitors with enhanced
capacitances induced by a leavening agent. J. Energy Storage. 28 (2020)
101210-101220.