[1] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58(23) (1987) 2486-2489. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2486
[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58(20) (1987) 2059–2062. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2059
[3] D. Liu, Y. Gao, A. Tong, and S. Hu, Absolute photonic band gap in 2D honeycomb annular photonic crystals, Phys. Lett. A. 379(3) (2015) 214-217.
Available: https://www.sciencedirect.com/science/article/pii/S0375960114011591
[4] H. Alipour-Banaei and F. Mehdizadeh, Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis, J. Opt. Commun. 34(4) (2013) 285-293.
Available: https://www.degruyter.com/view/j/joc.2013.34.issue-4/joc-2013-0033/joc-2013-0033.xml
[5] M. Noori, M. Soroosh, and H. Baghban, Highly efficient self-collimation based waveguide for Mid-IR applications, Photonics Nanostructures Fundam. Appl. 19 (2016) 1-11.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016000067
[6] M. Noori and M. Soroosh, A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides, Opt. Int. J. Light Electron Opt. 126(23) (2015) 4775-4781. Available: https://www.sciencedirect.com/science/article/pii/S0030402615008438
[7] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Active control of slow light on a chip with photonic crystal waveguides, Nature 438 (2005) 65-69. Available: https://www.nature.com/articles/nature04210
[8] G. Moloudian, R. Sabbaghi-Nadooshan, and M. Hassangholizadeh-Kashtiban, Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wave division multiplexing) applications, J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A., 39(8) (2016) 971-976. Available: https://www.tandfonline.com/doi/abs/10.1080/02533839.2016.1215937?journalCode=tcie20
[9] M. Zamani, Photonic crystal-based optical filters for operating in second and third optical fiber windows, Superlattices Microstruct. 92 (2016) 157-165.
Available: https://www.sciencedirect.com/science/article/pii/S0749603616300684
Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators * 95
[10] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices, J. Optoelectro. Nanostruc. 4(2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[11] Z. Rashki, S. J. S. Mahdavi Chabok, Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter, J. Optoelectro. Nanostruc. 3(3) (2018) 59-78. Available: http://jopn.miau.ac.ir/article_3046.html
[12] V. Kannaiyan, R. Savarimuthu, and S. K. Dhamodharan, Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer, Opto-Electronics Rev. 26(2) (2018) 108-115.
Available: https://www.sciencedirect.com/science/article/pii/S1230340217300951
[13] E. Rafiee and F. Emami, Design of a novel all-optical ring shaped demultiplexer based on two-dimensional photonic crystals, Opt. Int. J. Light Electron Opt. 140 (2017) 873-877.
Available: https://www.sciencedirect.com/science/article/pii/S0030402617305326
[14] R. Talebzadeh, M. Soroosh, Y.S. Kavian, and F. Mehdizadeh, Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Opt. Int. J. Light Electron Opt., 140 (2017) 331-337. Available: https://www.sciencedirect.com/science/article/pii/S0030402617304795
[15] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, All optical NAND gate based on nonlinear photonic crystal ring resonators, Opt. Int. J. Light Electron Opt. 130 (2017) 1214-1221. Available: https://www.sciencedirect.com/science/article/pii/S0030402616315261
[16] A. Kumar, M. M. Gupta, and S. Medhekar, All-optical NOT and AND gates based on 2D nonlinear photonic crystal ring resonant cavity, Opt. Int. J. Light Electron Opt. 179 (2019) 239-247. Available: https://www.sciencedirect.com/science/article/pii/S003040261831711X
[17] N. F.F. Areed, A. El Fakharany, M. F.O. Hameed, and S. S. A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers, Opt. Quantum Electron. 49 (2017) 45-53. Available: https://link.springer.com/article/10.1007/s11082-016-0852-z
[18] T. A. Moniem, All-optical XNOR gate based on 2D photonic-crystal ring resonators, Quantum Electron. 47(2) (2017) 169-176. Available: http://adsabs.harvard.edu/abs/2017QuEle..47..169M
96 * Journal of Optoelectronical Nanostructures Winter 2020 / Vol. 5, No. 1
[19] F. Mehdizadeh and M. Soroosh, Designing of all optical NOR gate based on photonic crystal, Indian J. Pure Appl. Phys. 54 (2016) 35-39. Available: http://op.niscair.res.in/index.php/IJPAP/article/view/5678/576
[20] M. Neisy, M. Soroosh, and K. Ansari-Asl, All optical half adder based on photonic crystal resonant cavities, Photonic Netw. Commun. 35(2) (2018) 245-250. Available: https://link.springer.com/article/10.1007/s11107-017-0736-6
[21] M. R. Jalali-Azizpoor, M. Soroosh, and Y. Seifi-Kavian, Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Netw. Commun. 36(3) (2018) 344-343. Available: https://link.springer.com/article/10.1007/s11107-018-0786-4
[22] F. Cheraghi, M. Soroosh, and G. Akbarizadeh, An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices Microstruct. 113 (2018) 359-365. Available: https://www.sciencedirect.com/science/article/pii/S0749603617322826
[23] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Proposal for realizing an all-optical half adder based on photonic crystals, Appl. Opt. 57(7) (2018) 1617-1621.
Available: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-57-7-1617
[24] A. Rahmani and F. Mehdizadeh, Application of nonlinear PhCRRs in realizing all optical half-adder, Opt. Quantum Electron. 50 (2017) 30-37. Available: https://link.springer.com/article/10.1007/s11082-017-1301-3
[25] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, A low-power all optical decoder based on photonic crystal nonlinear ring resonators, Opt. Int. J. Light Electron Opt. 174 (2018) 400-408. Available: https://www.sciencedirect.com/science/article/pii/S0030402618312397
[26] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Design and simulation of all optical decoder based on nonlinear PhCRRs, Opt. Int. J. Light Electron Opt. 156 (2018) 701-706. Available: https://www.sciencedirect.com/science/article/pii/S003040261731639X
[27] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Appl. Opt. 57(9) (2018) 2250-2257.
Available: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-57-9-2250
[28] F. Mehdizadeh, H. Alipour-banaei, and S. Serajmohammadi, Study the role of non-linear resonant cavities in photonic crystal-based decoder switches, J. Mod. Opt. 64(13) (2017) 1233-1239.
Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1275854
[29] T. A. Moniem, All optical active high decoder using integrated 2D square lattice photonic crystals, J. Mod. Opt. 62(19) (2015) 1643-1649. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1061061?journalCode=tmop20
[30] F. Haddadan and M. Soroosh, Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides, Photonic Netw. Commun. 37(1) (2018) 67-73. Available: https://link.springer.com/article/10.1007/s11107-018-0795-3
[31] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectron. 11(1) (2017) 29-35.
Available: https://digital-library.theiet.org/content/journals/10.1049/iet-opt.2016.0022
[32] A. Salimzadeh and H. Alipour-Banaei, An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators, Opt. Commun. 410 (2018) 793-798.
Available: https://www.sciencedirect.com/science/article/pii/S0030401817310544
[33] T. A. Moniem, All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, J. Mod. Opt. 63(8) (2016) 735-741. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1094580?journalCode=tmop20
[34] K. Fasihi, All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals, Opt. Int. J. Light Electron Opt. 125 (2014) 6520-6523.
Available: https://www.sciencedirect.com/science/article/pii/S0030402614009784
[35] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, A novel proposal for all optical analog-to-digital converter based on photonic crystal structures, IEEE Photonics J. 9(2) (2017) 4700311–4700322. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7891002
[36] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, All optical 2-bit analog to digital converter using photonic crystal based cavities, Opt. Quantum Electron. 49 (2017) 38-45. Available: https://link.springer.com/article/10.1007/s11082-016-0880-8
[37] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Appl. Opt. 56(7) (2017) 1799-1806. Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-7-1799
[38] A. Tavousi and M. A. Mansouri-Birjandi, Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices Microstruct. 114 (2018) 23-31.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617323273
[39] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari, Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators, Phys. E Low-dimensional Syst. Nanostructures, 83(?) (2016) 101-106. Available: https://www.sciencedirect.com/science/article/pii/S1386947716301795?via%3Dihub
[40] Y. C. Jiang, S. B. Liu, H. F. Zhang, and X. K. Kong, Design of ultra-compact all optical half subtracter based on self-collimation in the two-dimensional photonic crystals, Opt. Commun., 356 (2015) 325-329. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401815006598?via%3Dihub
[41] F. Parandin, M. R. Malmir, and M. Naseri, All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals, Superlattices Microstruct., 109 (2017) 437-441.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617309849?via%3Dihub
[42] R. Sivaranjani, A. S. Raja, D. S. Sundar, and T. K. Shanthi, Design of 2-dimensional photonic crystal based all optical half subtractor, International J. Adv. Eng. Res. Develop. 5(8) (2018) 1-7. Available: http://ijaerd.com/papers/special_papers/NCMOC11.pdf
[43] H. A. Haus, Waves and fields in optoelectronics, Prentice-Hall, Chapter 7, 1984.