[1] K. Pourchitsaz and M. R. Shayesteh, Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET), Journal of Optoelectronical Nanostructures 4 (1) (2019, Jan.) 51-66. [2] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, T. Elewa, Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance, IEEE Electron Device Letters 8 (9) (1987, Sep.) 410-412. [3] O. Semenov, A.Vassighi, M. Sachdev, A. Keshavarzi, CF. Hawkins, Effect of CMOS technology scaling on thermal management during burn-in, IEEE transactions on semiconductor manufacturing 16 (4) (2003, Nov.) 686-695.
[4] G. Saini, AK. Rana, Physical scaling limits of FinFET structure: A simulation study, International Journal of VLSI design & communication Systems (VLSICS) 2 (1) (2011, Mar.) 26-35. [5] M. Roohy, and R. Hosseini, Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor, Journal of Optoelectronical Nanostructures 4 (2) (2019, May.) 13-28.
[6] SP. Mohanty, Nanoelectronic mixed-signal system design, New York: McGraw-Hill Education, 2015, 78-94.
[7] W. Han, Toward Quantum FinFET, ZM. Wang, editor. Springer, 2013, 54-67.
[8] P. Mishra, A. Muttreja, N. K. Jha, FinFET circuit design, in Nanoelectronic Circuit Design, Springer, 2011, 23–54.
[9] R. Das, R. Goswami, and S. Baishya, Tri-gate heterojunction SOI Ge-FinFETs, Superlattices Microstruct 91 (2016, Mar.) 51–61.
[10] V. E. Dorgan, M.-H. Bae, and E. Pop, Mobility and saturation velocity in graphene on SiO2, Applied Physics Letters 97 (8) (2010, Aug.), 82112.
[11] A. T. M. Fairus, V. K. Arora, Quantum engineering of nanoelectronic devices: the role of quantum confinement on mobility degradation, Microelectronics Journal, 32 (8) (2001, Aug.) 679–686. [12] B. Azizollah-Ganji, and M. Gholipour, Effects of the channel length on the nanoscale field effect diode performance, Journal of Optoelectronical Nanostructures 3 (2) (2018, Jun.) 29-40.
[13] V. K. Arora, Theory of scattering-limited and ballistic mobility and saturation velocity in low-dimensional nanostructures, Current Nanoscience 5 (2), (2009, May.) 227–231.
[14] V. Kilchytska, S. Makovejev, S. Barraud, T. Poiroux, J.-P. Raskin, D. Flandre, Trigate nanowire MOSFETs analog figures of merit, Solid-State Electronics, 112, (2015, Oct.) 78–84. [15] N. Collaert, A. De Keersgieter, K. G Anil, and et al., Performance improvement of tall triple gate devices with strained SiN layers, IEEE electron device letters 26 (11) (2005, Oct.) 820-822.
[16] J. Kedzierski, High-performance symmetric-gate and CMOS compatible Vt asymmetric-gate FinFET devices, in IEDM Tech. Dig., (2001) 437-440. [17] T. Kanemura, T. Izumida, N. Aoki, M. Kondo, and et al., Improvement of drive current in bulk-FinFET using full 3D process/device simulations, In IEEE International Conference on Simulation of Semiconductor Processes and Devices (2006, Sep.) 131-134. [18] A. Sachid, C. Min-Cheng, and H. Chenming , FinFET With High-ê Spacers for Improved Drive Current. IEEE electron device letters 37(7) (2016, May.) 835-838.
[19] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, Statistical variability and reliability in nanoscale FinFETs, in Electron Devices Meeting (IEDM), 2011 IEEE International, (2011, Dec.) 4–5.
[20] I. Ferain, C. A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors, Nature 479 (7373), (2011, Nov.) 310.
[21] C. H. Wang, P.-F. Zhang, Three-dimensional DIBL for shallow-trench isolated MOSFET’s, IEEE Transactions on Electron Devices 46 (1) (1999, Jan.) 139–144.
[22] Threshold voltage roll-off compensation using back-gated MOSFET devices for system high-performance and low standby power, by H. I. Hanafi, R. H. Dennard, W. E. Haensch. (2006, Aug.) Google Patents [Online]. Available:https://patents.google.com/patent/US7089515B2/en
[23] T. Skotnicki, Heading for decananometer CMOS-Is navigation among icebergs still a viable strategy?, in Solid-State Device Research IEEE (2000, Sep.) 19–33.
[24] S. Sengupta, S. Pandit, Study of LER/LWR induced V T variability of an EنDC n-channel MOS transistor, in Devices for Integrated Circuit (DevIC) (2017, Mar.) 685–689.
[25] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging, in Electron Devices Meeting (2007, Dec.) 247–250.
[26] C. H. Jan, U. Bhattacharya, R. Brain, S.J. Choi, G. Curello, G. Gupta, W. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications, in Electron Devices Meeting (IEDM) (2012, Dec.) 1–3.
[27] M. Radosavljevic, G. Dewey, J. M. Fastenau, J. Kavalieros, R. Kotlyar, B. Chu-Kung, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, Non-planar, multi-gate InGaAs quantum well field effect transistors with high-k gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications, inElectron Devices Meeting (IEDM) (2010, Dec.) 1–6.