[1] M. Mansuri, A. Mir, A. F. orcid, Numerical Modeling of a Nanostructure Gas Sensor Based on Plasmonic Effect, JOPN, 4, (2019) 29.
[2] S. Pfalzner, An introduction to inertial confinement fusion, CRC Press (2006).
[3] J. D. Lindl R. L. McCrory, E. M. Campbell, Progress toward ignition and burn propagation in inertial confinement fusion, Phys. Today, 45, (1992) 32.
[4] E. Heidari, Ultra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma, JOPN, 4, (2019) 27.
[5] R. Craxton et al., Direct-drive inertial confinement fusion: A review, Phys. Plasmas, 22, (2015) 110501.
[6] O. Hurricane et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature, 506, (2014) 343.
[7] V. Gopalaswamy et al., Tripled yield in direct-drive laser fusion through statistical modelling, Nature, 565, (2019) 581.
[8] M. Olyaee, M. B. Tavakoli, A. Mokhtari, Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure, JOPN, 4, (2019) 95.
[9] L. M. Waganer, Innovation leads the way to attractive inertial fusion energy reactors–Prometheus-L and Prometheus-H, Fusion engineering and design, 25, (1994) 125.
[10] D. Eimerl et al., Configuring NIF for direct-drive experiments. in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), International Society for Optics and Photonics. (1995).
[11] L. Safaei, M. Hatami, M. B. Zarandi, Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC. JOPN, 2, (2017) 69.
[12] L. Safaei, M. Hatami, M. B. Zarandi. Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC, JOPN, 3, (2018) 37.
[13] R. Sato et al., Non-uniformity smoothing of direct-driven fuel target implosion by phase control in heavy ion inertial fusion, Scientific reports, 9, (2019) 6659.
[14] G. Pert, The analytic theory of linear resonant absorption, Plasma Physics, 20, (1978) 175.
[15] J. Freidberg R. Mitchell R. L. Morse, L. Rudsinski, Resonant absorption of laser light by plasma targets, Physical Rev. Lett., 28, (1972) 795.
[16] V. Tikhonchuk et al., Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes, Matter and Radiation at Extremes, 4, (2019) 045402.
[17] W. Kruer, The physics of laser plasma interactions, CRC Press , (2018).
[18] S. Eliezer, The interaction of high-power lasers with plasmas, CRC press. (2002).
[19] O. Embréus A. Stahl, T. Fülِp, Effect of bremsstrahlung radiation emission on fast electrons in plasmas, New J. Phy., 18, (2016) 093023.
[20] E. I. Moses, C. R. Wuest, The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies, Fusion Science and Technology, 43, (2003) 420.
[21] L. Schlessinger, J. Wright, Inverse-bremsstrahlung absorption rate in an intense laser field, Phys. Rev. A 20 (1979) 1934.
[22] B. Langdon, Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions, Phys. Rev. Lett. 44 (1980) 575.